Capstone I - Final Proposal

Brandon Russell, Daniel Rowett, Alexander Kalmes, Sam Hudson, Cody Sturgeon, Jackson Carlton (Group 16)

Project members

Capstone group members:

- Brandon Russell
- Cody Sturgeon
- Daniel Rowett
- Alex Kalmes
- Sam Hudson
- Jackson Carlton

Champion:

• Nauman Malik

Problem

The time spent on average per year at the grocery store

2~ trips

The number of trips per week to the grocery store

2/5 buyers

Go to multiple grocery stores to obtain everyday items

15% sales

Percentage of all grocery sales that were made online prior to COVID

Autonomy

Their are a number of factors that can influence one's ability to go to stores Availability

Local stores may not always have stock of the product you need when you need it

Home Re:StockTM

Project Introduction

What is Home Re:Stock:

- A network of *smart* sensors* that allow a user to monitor the levels of any consumable product(s) they wish
- Works in conjunction with a user interface so you can monitor a product's current levels or track its usage over time

Why did we choose this project?

- The project involves both hardware and software
- The software side of the project is quite substantial
- The project provides a realistic product development experience

Related works / Existing solutions

Amazon:

- Dash button (discontinued)
- Dash services
- Auto re-order

Retail orientated:

- Prediction algorithms
- Scan-n-track

	Home Re:Stock	Dash Button	Dash Services	Auto Re-order	Prediction Algorithms	Scan n-track
Based on real values	~	×	~	×	×	~
Multi product compatible	\checkmark	×	×	~	\checkmark	\checkmark
Designed for the home	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×

Home Re:Stock Design goals

Short term goals:

- Provide means to an affordable network of sensors
- Ensure a sensor is able to monitor any consumable product
- Enable users to monitor sensor(s) remotely via the internet
- Monitor the usage of a product over time

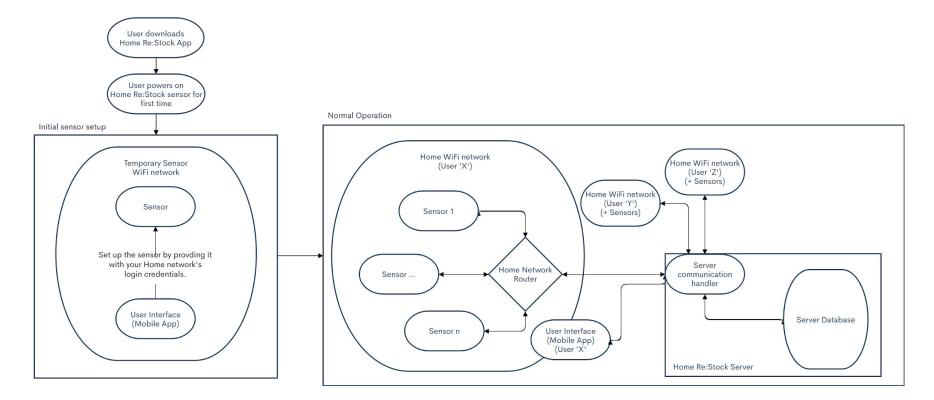
Long term goals:

- Increase user convenience by enabling automatic reordering of a product
- Integrate with company APIs to look for best prices or alternatives

How we will help Home Re:Stock

Improve existing hardware:

- Refine prototype design
- Create 3 total different form factors


Create various pieces of software:

- User interface (app)
- Backend server + database integration
- Sensor firmware

Deliver a fully working ecosystem of components by the end of Capstone II

• Provide easy means of increasing feature set without our contribution

Architecture overview

Sensor Design and Architecture

Sensor requirements:

- Affordable physical design no more than \$8 retail cost
- Have substantial battery life and minimal user interaction after initial setup
- Available in multiple form factors

Sensor architecture:

- Hardware: (5 essential components)
 - Casing, Load cell(s), Load cell amplifier, Microcontroller, Power supply
- Software:
 - Two main modes of operation: Setup mode, and Standard mode
 - Communicates with server during Standard mode
 - Communicates with user interface during Setup mode
 - Periodically sends data to server, and can receive commands from server at any time

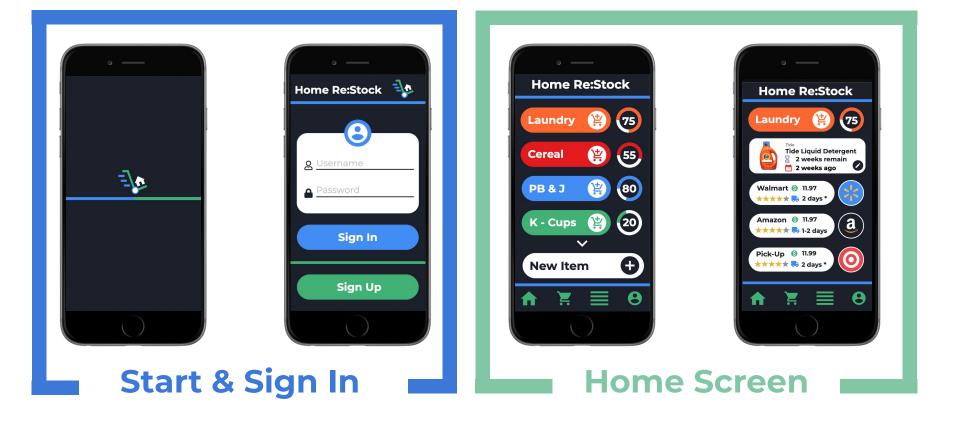
Backend Server Design and Architecture

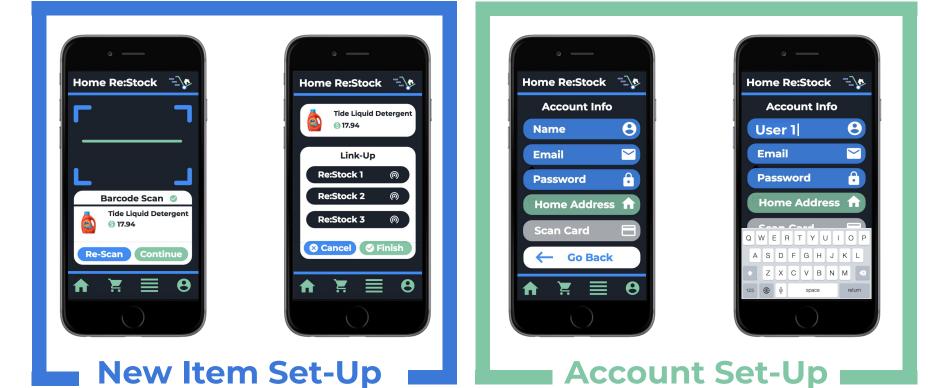
Backend requirements:

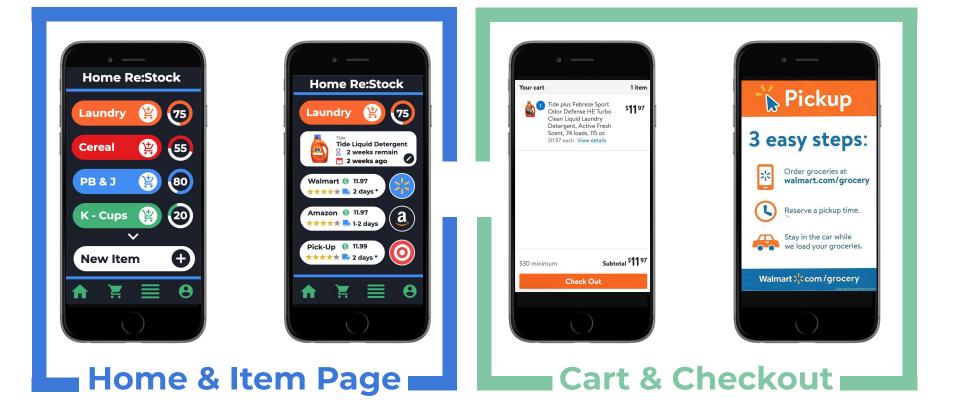
• Needs to be able to communicate with many different user interfaces and sensors simultaneously.

Backend architecture:

- A communication handler will interpret commands received from user interfaces and data from sensors. An action will be performed by the server based on the command issued or data received.
- A database will be used to securely store sensor and account related data.
 - Data will be able to be retrieved only by a user with the proper credentials


User Interface Design and Architecture


User Interface requirements:


- Must closely resemble the provided application mockups
- Still able to work with reduced functionality even when offline

User Interface architecture:

- Only communicates directly with a sensor during the sensor's initial setup
 Able to provide the sensor with details required for WiFi connection and account info
- Communicates only with the server backend during normal operation
 - \circ \hfill Able to issue commands and view sensor data by using the server as a middle man
- Saves 30[~] days worth of data per sensor for offline functionality

Tasks and Schedule

Sensor:

- Refine the design of the prototype. Create a small, medium, and large version
- Implement sensor firmware

Server:

- Document a list of all [(app, sensor) → server] commands. Create an IO outline
- Design a detailed database schema
- Implement code for each of the above commands

User Interface:

- Refine existing mockups. Create more where needed
- Implement the various features of the app. Follow server IO outline closely

Deliverables

Hardware:

• A single physical sensor

Software:

- Sensor software / firmware
- Hardware CAD files
- Backend server code* + database scheme and initial data
- User interface source code

Documentation:

- Software design overview and hardware design overview documents
- User interface mockups
- Final report

Facilities and Equipment

Facilities:

• FAY fabrication laboratories

Equipment:

- PC + Programming IDEs
- Autodesk Inventor (Student)
- 3D Printer for initial prototype / CNC for final prototype
- Electrical tools
- The various components that make up a single sensor