

CSCE 4561 Capstone I Fall 2020

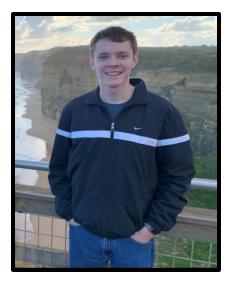
Project Proposal: NASA/Robotic Mining Competition Rover

Group Members: Andrew Burroughs, Calvin Franz, Z. Gunner Lawless, Jett McCullough, Carson Molder

December 6th, 2020

About us

Andrew Burroughs Comp. Sci. Senior


Calvin Franz Comp. Sci. Senior

Z. Gunner Lawless Comp. Sci./Eng. Senior

Jett McCullough Comp. Sci. Senior

Carson Molder Comp. Eng. Senior

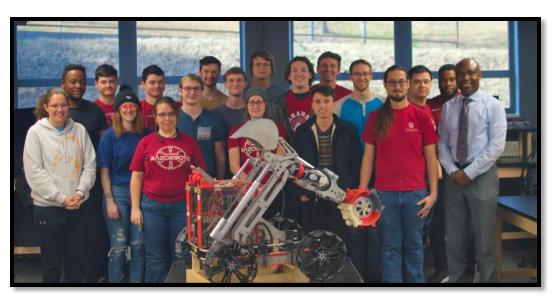
& Computer Engineerin

Problem

It costs about \$1.2 Million/kg to send materials to the moon (2019 est.)[1]

- NASA's Artemis program:
 - 2024 Return to Moon
 - 2030s Visit Mars
- Extended missions are too expensive
- Need to gather and process materials while in space

Image Source: nasa.gov [1]



Objective

Our goal is to develop the software for a robot that can autonomously mine rocks on the moon.

- NASA Artemis Student Challenge
 - Held at Kennedy Space Center
 - Competition between universities for the best mining robot
- Razorbotz
 - Team of UARK students competing in RMC
 - Led by our project champion, Professor Uche Wejinya
- We want to win first place!

Last Year's Team and Rover

Background: Key Concepts

• Refactor existing code

UNIVERSITY C ARKANSA

- Automation with computer vision
 - Identify objective locations and key targets
 - Path generation/discovery
 - Tools: ZED SDK, PyTorch, Git
- Robot Operating System 2 (ROS2) to program robot
 - Multi-language support (Python, C, etc.)
- Overhaul interface for manual control of the robot

O PyTorch

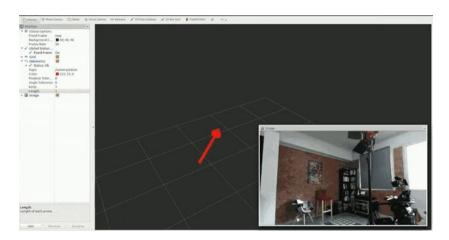


Image Sources: ZED Docs [2], Pytorch.org [3]

Background: Related Work

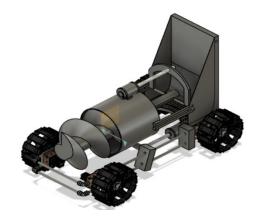
- Existing code from previous years
 - Developed largely by mechanical engineers
 - Codebase needs overhaul
 - Documentation
 - Git

UNIVERSITY OF ARKANSAS.

- Unit Testing
- Version upgrades
- Robot automation
 - New emphasis on autonomy in competition
 - Increased automation with computer vision
- Improvements
 - Programming standards
 - Software stability
 - Usability
 - Autonomy

& Computer Engineer

Deliverables


- Design document
- ROS2 nodes

UNIVERSITY OF ARKANSAS.

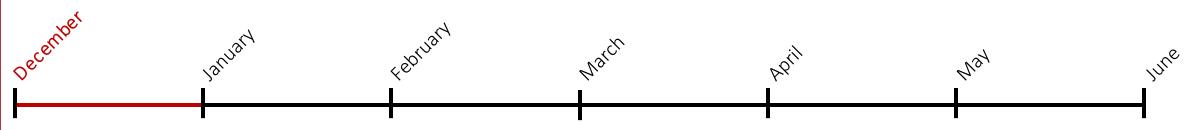
- Port ROS 1 code to ROS2
- Nodes are small, independent "building blocks" of ROS that send and receive data
- Autonomy, excavation, navigation, movement nodes
- Documentation
- Robot testing data
 - Evaluate in test lab
- Final report
- Project website
- Competition prize!

Refactor and Upgrade Old Code

ROS1 to ROS2 Update Modules

Documentation

Improve Manual Control and UI



Implement Full Autonomy

Excavation, Dump, Travel

Machine Learning

December

- Finish conversion from ROS to ROS2
- Finish Manual Controls

Image Source: github.com/ros2 [4]

January

December

• Begin Excavation Macro

January

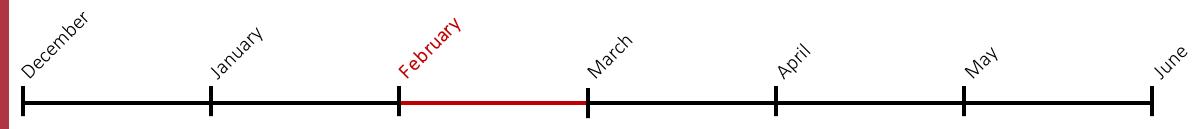
• Implement Sensors and Cameras

February

Warch

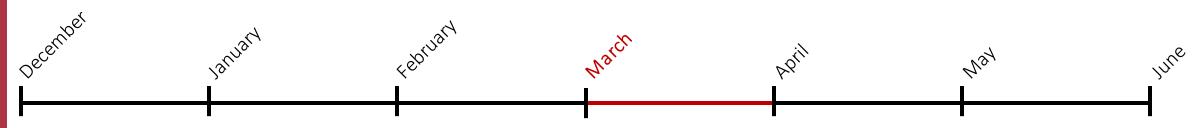
Nor

APÍI


Image Source: stereolabs.com [5]

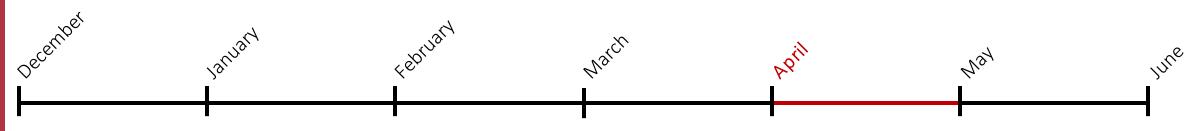
& Computer Engineering

June



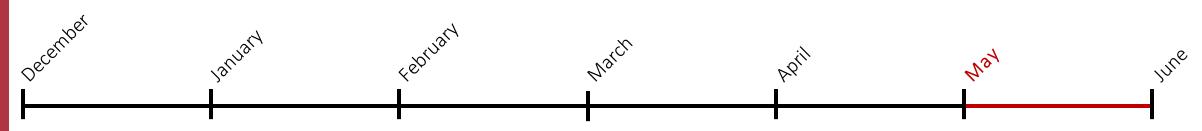
February

• Begin Training AI to map excavation features



March

- Complete Excavation Macro
- Finish Code



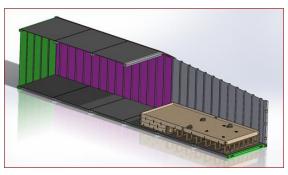
April

• Finish Final Testing of Camera and Sensors

May

- Graduate!
- Compete!
- Win!

Facilities and Equipment


Mechanical Engineering Robotics Lab

Campus Test Pit

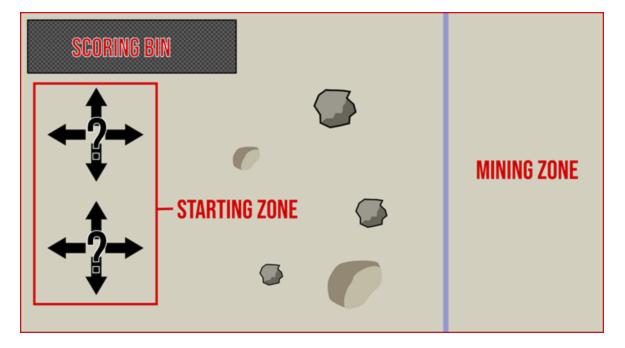
Autonomy / AI development

- Jetson Nano
 - Small computer that can run neural networks for the robot
- Nvidia RTX 2080 Ti
- Data Science Lab computers (potentially)

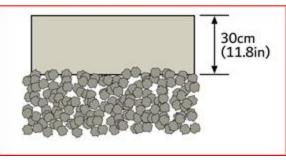
Campus Test Pit:

Jetson Nano:

Image Source: nvidia.com [6]



Requirements


Autonomy

UNIVERSITY OF ARKANSAS

- Navigational Autonomy
- Excavation Autonomy
- Dump Autonomy
- Full Autonomy
 Version Control
 Unit Tests

SIDE CROSS-SECTION

& Computer Engineering

References

[1] "NASA Robotic Mining Comptetiton (RMC) Lunabotics 2021, Registration, Rules and Rubrics," NASA, 2020. url: <u>https://www.nasa.gov/sites/default/files/atoms/files/000 rmc lunabotics rules rubrics 2021.pdf</u>

[2] "Getting Started with ROS and ZED," Stereo Labs, 2020. url: <u>https://www.stereolabs.com/docs/ros/</u>

[3] PyTorch Homepage, Pytorch, 2020. url: <u>https://pytorch.org</u>

[4] "ROS2 Github Repository", Github, 2020. url: <u>https://github.com/ros2</u>

[5] "Sterolabs Homepage", Stereolabs, 2020. url: https://stereolabs.com

[6] "Jetson Nano Developer Kit," Nvidia, n.d. url: <u>https://developer.nvidia.com/embedded/jetson-nano-developer-kit</u>

