Emotion Tracking Browser Extension for use in Classrooms

Final Update

Caleb Duke, Allison Frye, Cassidy McManus, Ryan Rau, Gage Robinson

The Team

- Develop an application that allows for interpersonal connections in a classroom during virtual learning
- Bridge the current emotional and physical gap between students and instructors
- Use facial recognition to track student's facial expressions, emotions, and presence to provide near real time feedback of the student's activity for the instructor

OBJECTIVE

ARCHITECTURE

- All services are built and connected
- All are hosted on VM, except Chrome extension is local for now

Backend

Pinned Tab

Python Server

Virtual Machine

Previously....

- Chrome Extension
- Capturing page
- General graphing page

Collecting data...

Data is currently being collected for:

User ID: 1

Lecture ID: 122

No pictures are saved! All pictures are disposed of after emotion analysis.

Dev Tools

Additional Things Added Since Midpoint

- Teacher's page
- Python Queue System to Tile Images
- Predictive Modeling
- All around styling improvements

Student Usage Demo

Teacher's Page

Key Features:

- Import a CSV file of students
- Import roster for a class (1:1 section to class)
- View statistics on a lecture
- Create new lecture

Using CSV Files for Large Database Operations

- Take in CSV from teacher's page using OpenCSV, and save endpoints to respective tables in database
- This is particularly useful when wanting to create many users at once, whether it be from an Excel file, or from a list of existing enrollments.
- A brief explanation of how the logic works:
 - 1. Checking and handling case of an empty file.
 - 2. Instantiating a CsvToBean object, which allows us to transform data within a CSV into Java objects.
 - 3. Creating a list of Class Roster DTO objects that can be iterated through.
 - 4. For loop that iterates through the DTO list and calls entity set methods to assign proper values.
 - 5. Call to the proper method in the commands class create the new Class Roster.

Teacher Page Demo

Queue and Tiling

- Our back-end enqueues images from each user as they arrive
- The once the queue reaches 9 images, the images are tiled together in a composite image
- This composite image is sent to AWS for processing
- Why do it this way?
 - Reduces the total amount of images sent to Amazon Rekognition which keeps costs low.

Near Realtime Data Processing Demo

Predictive Modeling

- AWS returns percentages for the following emotions:
 - Calm
 - Surprised
 - Happy
 - Disgusted
 - Confused
 - Sad
- Graphed alone not that useful...

Predictive Modeling Continued...

- Generalize data into 3 groups
 - Not listening
 - Neutral
 - Actively Listening
- Sklearn Logistic Regression model to make predictions

```
'input_data": [
[80.96, 7.49, 9.37, 0, 0, 0],
[41.7, 40.88, 14.89, 1.58, 0, 0],
[26.8, 66.92, 3.89, 3.58, 0, 0],
[81.34, 15.49, 1.92, 1.058, 0, 0],
[88.05, 4.6, 5.88, 0, 0, 0],
[32.32, 51.36, 15.95, 0, 0, 0],
[66.08, 20.53, 12.46, 0, 0, 0],
[76.59, 2.17, 19.599, 0, 0, 0],
[81.62, 10.008, 7.91, 0, 0, 0],
[98.27, 1.21, 0, 0, 0, 0],
[98.57, 0, 0, 0, 0, 0],
[98.37, 0, 0, 0, 0, 0],
[63.31, 34.36, 1.99, 0, 0, 0],
[72.21, 21.87, 5.1, 0, 0, 0],
[93.61, 3.42, 0, 0, 0, 0],
[95.93, 2, 1, 0, 0, 0],
[98.07, 0, 0, 0, 0, 0],
[22.7, 3.9, 63.61, 0, 1, 8.14],
[0, 0, 0, 0, 0, 99.2],
[78.46, 0, 8, 0, 6.8, 4.2],
[2.8, 6.7, 80.2, 0, 0, 9.04],
[75.3, 1.3, 5.02, 1.95, 11.83, 3.12],
[75, 0, 21.17, 0, 1.8, 0]
```


Predictive Modeling Demo

For the Future

- Improve accuracy of data which would require more time and different types of people
- Would like to analyze live video streaming, but expensive
- Size/scalability (not really good with lots of people)
- A full statistics page for a student to evaluate their reactions