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Abstract 

The problem to solve is to improve an open-source handwriting recognition model. The overall 

objective is to improve the already 75% accuracy to a 90% accuracy with several avenues to 

continue forward. As time goes on, scanning documents for information will get increasingly 

more important as copying or translating written information to a machine-readable state takes 

time and money to do. For this reason, it is important for a program to exist that scans 

documents for letters and words and converts them to a far more readable and easy-to-store 

state for computers so that chronicling information is faster for people who need to record 

information but cannot bring devices with them to do so. 

1.0             Problem 

As we continue to store more data electronically, there are still various documents that 

are being handwritten, such as loan applications or medical reports. Handwritten reports may 

not have machine-readable text that document processors can process.  

This problem has led to the development of Handwritten Text Recognition (HTR), which 

applies Deep Learning to process handwritten documents into a machine-readable form. 

However, open-source HTR projects have yet to reach a level of performance to be used in 

enterprise applications. Because handwriting differs between each person, so does accuracy. 

Having a computer be able to read in handwriting regardless of writing style allows data logging 

individuals to save time when it comes to copying that information and reduce the likelihood of 

errors, such as hand-typed in typos, in the machine-readable text. 

2.0             Objective 

The objective of this project is to build upon and experiment with model architectures 

and data manipulations of an open-source HTR Deep Learning model to improve the accuracy 

of performance. In order to improve the accuracy of the HTR Deep Learning Model, we will 

work with several technologies used in the model, including the CNN layers, RELU function, 

replacing the optimizer with an Adam optimizer, and switching between an LSTM and a 2D 

LSTM, and increasing the dataset size with the IAM. 

We may also try to improve the accuracy of the model by working with the input. 

Because each person has unique handwriting, we can work with the word beam search, de-

slanting the input images, and token passing the input. 



Currently we do not know what exactly will happen when we work with each of these 

individual aspects of the model. By experimenting with the model, we will gain more 

experience and understanding of each individual part, and we will then apply our knowledge of 

machine learning to improve the aspects of the model that will result in improved accuracy. 

3.0             Background 

 

3.1              Key Concepts 

 

The first key technology that we will be dealing with is CNN layers. CNN is short for 

convolutional neural network. Using a CNN allows us to use nodes to assign importance, also 

known as weight, and also assigns threshold [7]. CNN is a common approach to dealing with 

handwritten character recognition, and will be one of our focus points while experimenting [1]. 

Our input image will first be fed into our CNN layers. These layers are trained to extract the 

relevant features from the image that we need. Every layer in the CNN will consist of 3 

operations. The first operation will apply a filter kernel of 5x5 in the first two layers and a 3x3 in 

the last 3 layers of the input. A filter kernel is a matrix of numbers that will be multiplied times 

our input image in order to alter the image values. After that we will apply a nonlinear RELU, 

Rectified Linear Unit, function. Finally, a pooling layer summarizes image regions and outputs a 

downsized version of the image.  

The CNN layer uses nodes known as Neurons that are placed in layers. The connections 

neurons have between each other are known as synapses. The neurons first receive an input 

signal from a source, perform calculations, then send output signals further in the CNN through 

the synapse.  

With each synapse there is a weight that goes along with it. This weight represents the 

strengths between the neurons. If the weight from node 1 to node 2 has greater magnitude, it 

means that neuron 1 has greater influence over neuron 2. A weight decides how much 

influence the input will have on the output.  

Along with the weight there is a corresponding gradient that goes along with it. The 

gradient tells how sensitive the cost is to change in its weight. If we have synapse A that has a 

gradient of 3.2 and a synapse B that has a weight of .1, then a change in weight of synapse A is 

32x more sensitive than a change in the weight of synapse B. 

After our input is run through the CNN, a nonlinear RELU function is applied to it. RELU, 

Rectified Linear Unit, is a piecewise function that will return our input if our input is greater 

than zero, and will return 0 if our input is less than 0. The RELU function is linear for values 

greater than zero which makes it great for backpropagation.  

Backpropagation is a class of algorithms that compute the gradient of the loss function 

with respect to its weights. Backpropagation is how we are going to adjust the weights and 



biases of our neural network in order to get the desired neurons to fire. For example, if we are 

trying to have the letter A be recognized by our neural network, we would want to adjust our 

values and biases so that neurons that have a positive impact on our neural network 

recognizing the letter A become more active.  

RELU functions are often used because it is a model that is easier to train and often has 

satisfactory performance [2]. We will apply this nonlinear RELU function in the hope that it will 

be close to linear or linearly separable. To understand linear separability, imagine there is a set 

of data points with half being blue and half being red. The data set will be linearly separable if 

there exists a line that can be drawn in the plane so that all of the blue points and all of the red 

points are on each side of the line.  

The other reason a RELU function is used, as opposed to a sigmoid function, which is a 

function that will return values ranging from either 0.0 to 1.0., is that the RELU function does 

not suffer from the vanishing gradient problem. The vanishing gradient problem, also known as 

the exploding gradient problem, is a problem that arises when computing gradients during 

backpropagation. In a neural network in order to calculate the gradient for a node, we have to 

use all nodes gradients that our current node has outward synapses to. There is no issue at the 

beginning of, but as we go further back each node starts to have more and more connecting 

gradients to it, which means more and more calculations. With how large our neural network is, 

this problem gets worse as worse as there are tons of nodes. It gets worse and worse due to a 

gradient at any point, being the multiplication of all gradients at prior layers. If we were to use a 

sigmoid function, all of our gradients would be between 0 and 1, which would mean as 

backpropagation occurs, each nodes gradient gets smaller and smaller. As a result of these 

small numbers, our accuracy is very low, along with backpropagation would take a long time. 

This is why a RELU function is used, as it is not bounded by 0-1, meaning no vanishing gradient.  

RNN, Recurrent Neural Network, are a class of artificial neural networks where 

connections between nodes form a directed graph along a temporal sequence. RNNs will allow 

us to use previous outputs to be used as inputs, so for ours we will be using the outputs from 

our CNN to pass them into our RNN. One problem with RNNs is that they too can also often 

lead to a vanishing/exploding gradient. A special type of RNN called Long Short-Term Memory 

(LSTM) can also help to solve this issue.  

An LSTM is a special type of RNN. LTSMs specialize in remembering information for long periods 

of time. They can propagate information through longer distances and provide more robust 

training characteristics than normal RNN. The reason why am LSTM can help with solving the 

vanishing gradient problem is through its use of a thing called a cell state and a forget gate. The 

reason for what these do is very math heavy, but basically they stop the LSTMs solve the 

vanishing gradient problem by preventing the gradient from going to 0 as a function of the 

number of samples seen thus far[16].  it Our model currently consists of two LSTM layers. 



Another key technology that we will be using is a 2D-LSTM. A 2D-LSTM is a special king 

of LSTM. The difference between a 2D LSTM and a regular LSTM is that a 2D LSTM takes in 2D 

input as its input, as opposed to the regular 1D input. A 2D LSTM can potentially will be an 

improvement in this project due to the fact the input will be passing in  is an image, which 

comes in a 2D form. Although we have yet to know if this will improve the accuracy [3], it is one 

of the focal points of our experimentation. 

After our image goes through the LSTM, that output along with the ground text is sent 

to a CTC. CTC stands for Connectionist temporal classification and is a type of neural network 

output and scoring function that is used for training LSTMs. The CTC function will compute the 

loss value of the neural network. The loss value is basically how well or how poorly our neural 

network is doing. The higher the loss value the worse that the neural network is doing. A 

perfect neural network will have a loss value of zero. 

In order to train our dataset, we are going to use an input data set from IAM. The IAM 

Handwriting Database contains forms of handwritten English text which can be used to train 

and test handwritten text recognizers and to perform writer identification and verification 

experiments. The IAM database consists of 1,539 pages of scanned text, 5,685 isolated 

sentences, 13,353 lines of text, and finally 115,620 words. 

Error in machine learning is known as Loss. Loss can occur to due to a variety of reasons, 

including inaccurate assigned weights. This is especially the case due to how weights are 

imperfect and not always accurate. In order to deal with loss, we use an optimization algorithm 

to update network weights and the learning curve of the neural network, allowing for more 

accurate results. 

Another term/concept that will be involved in this project is an Adam optimizer. An 

Adam optimizer is an optimization algorithm that can be used to iteratively update network 

weights based on training data. The Adam optimizer is used instead of a classical stochastic 

gradient descent procedure. A stochastic gradient descent will maintain the single learning rate, 

alpha, for all weight updates and the learning rate does not change during training. Adam 

instead calculates an exponential moving average of the gradient and the squared gradient, and 

the parameters beta1 and beta2 control the decay rates of these moving averages. Beta1 is the 

exponential decay rate for the first moment estimates, while beta2 is the exponential decay 

rate for the second-moment estimates. The downside of using Adam is our number of epochs 

will increase 

For our project we may often get inputs of letters that look very similar to each other. 

Take for example mixing up an a for a o and an i. To fix this we are going to use a decoder with 

one of two algorithms. One of these two algorithms is word beam search. Word beam search 

works by having each of our inputs be in either two states, a word state or a non-word state. 

When in the word state we are only going to allow characters that will form words, compared 

to when we are in a non-word state, we are going to allow characters like “ “. We can only 



move from a word state to a non-word state when we are finished with a word, and can move 

from the non-word state to the word state when we receive another character. 

The other algorithm that we can use is called token passing. For token passing we are 

going to use a dictionary and a word language model. The algorithm will search for the most 

probable sequence of words in the dictionary in the neural network output. One problem with 

token passing is that it can struggle with punctuation in words and numbers. 

 

3.2              Related Work 

CAPTCHA [11] is a service that checks if the visitor is a robot by sending them a garbled 

message that only humans can solve while computers struggle with immensely. ReCAPTCHA on 

the other hand decides to take this pattern recognition ability that human brains have and put 

it towards digitizing words from printed media and help train AI to recognize images in a photo.  

Our project is meant to work on its own after a good amount of training and it’s also open 

source in comparison to ReCAPTCHA. 

Gboard [12] is a service provided by google that incorporates both predictive text and 

translating handwriting to text. However, it’s only available on android devices and backed by 

Google while our handwritten recognition model will be open source and thus free to use 

elsewhere.  

Microsoft OneNote [13] is a service that is offered by Microsoft that it not only accepts 

PDFs, it can also translate any written text on it into machine-readable text. This may seem like 

a superior program to our project, but, however, it’s run by Microsoft, while ours is open 

source, making it more available for others to use as a basis in their own programs. 

4.0             Design 

4.1              Requirements and/or Use Cases and/or Design Goals 

Our primary design goal is to achieve 90% accuracy from the initial 75% accuracy from 

the given open-source HTR Deep Learning model. We will experiment with the code from a 

variety of approaches to attempt to achieve this 90% accuracy. 

4.2              Risks 

Risk Risk Reduction 

 Incorrect output poses a risk 

to the data and thus can cause 

issues in recording 

 By raising the accuracy of the output, we can reduce the 

risk of errors. 

 Unique handwriting styles or 

sloppy handwriting may 

influence the output 

 Working with a variety of input and working with the de-

slant image code may reduce this risk 



4.4              Tasks 

We have been provided a repo that already contains prebuilt methods and command 

line arguments for training and validating the model. Thus, most of our time will be spent on 

experimenting with different model architectures and image transformation methods rather 

than building the train/test pipeline from scratch. The current model performs with an accuracy 

of around 75% on the IAM Offline Handwritten Text Recognition (HTR) dataset. We will be 

improving the performance of the Open-source Handwritten Text Recognition (HTR) Deep 

learning mode to meet the enterprise applications performance threshold of ~90%. 

For implementation and design, the model that was offered to us is an open-source 

code in a Github repository. This Handwritten text recognition model uses Python as the 

programming language, implemented with TensorFlow (TF) and trained on the IAM offline HTR 

dataset. The model takes images of single words or text lines (multiple words) as input and 

outputs the recognized text. Three quarters of the words from the validation-set are correctly 

recognized, and the character error rate is around 10%. 

We are using an agile methodology to manage our project and the framework we are 

choosing is Bi-weekly Scrum. The timeline is between 16 – 20 weeks (about 4 and a half 

months). CGI acceptance rate for projects is 90%. So, in order to get our project to 90% we will 

be meeting every two weeks and assigning tasks by sprint.  

SPRINT 1 

•Data augmentation: As a result of limited data, we will increase dataset-size by applying 

further (random) transformations to the IAM input images. These changes can be flipping, 

translations, or rotations to our datasets. By creating these changes our neutral network can 

this is a different dataset.  Now, only random distortions are performed. 

SPRINT 2 

•Remove cursive writing style in the input images (see DeslantImg). We will be using the 

Deslanting Algorithm, which can be found in an open-source repository. This algorithm sets 

handwritten text in images upright, i.e., it removes the cursive writing style. One can use it as a 

preprocessing step for handwritten text recognition. 

SPRINT 3 

•Increase input size (if input of Neutral Networks is large enough, complete text-lines can be 

used, see lamhoangtung/LineHTR). 

SPRINT 4 

•Add more Convolutional Neural Network. This will help with analyzing our image 

SPRINT 5 



•Replace LSTM by 2D-LSTM. 

SPRINT 6 

•Replace optimizer: Adam optimizer improves the accuracy; however, the number of training 

epochs increases (see discussion). 

SPRINT 7 

•Decoder: As explained above in key concepts, we will be using token passing or word beam 

search decoding to constrain the output to dictionary words. The algorithm will search for the 

most probable sequence of words in the dictionary in the neural network output. 

SPRINT 8 

•Text correction: if the recognized word is not contained in a dictionary, search for the most 

similar one. 

SPRINT 9 

Final testing  

 

4.5              Schedule – 

Tasks Dates 

1. Meeting with Industry champion on what needs to be done… 10/19 

  

2. Get familiar with repo, AI, and python 10/26-11/9 

3. Data augmentation 11/16 - 11/30 

4. Remove cursive writing style in the input image 11/30 - 12/14 

5. Increase input size 1/11 - 1/25 

6. Add more CNN layers 1/25 - 2/1 

7. Replace LSTM by 2D-LSTM 2/1 - 2/15 

8. Replace optimize 2/15 - 3/1 

9. Decoder 3/1 - 3/15 

10. Text correction 3/15 - 3/29 

11. Testing 3/29 - 4/19 



12. Documentation 4/19- 5/3 

4.6              Deliverables 

• Design Document: Contains a listing of each major software component and the 

resulting changes to each component 

• Initial data:  The starter code: SimpleHTR, DeslantImg, LineHTR, CTCWordBeamSearch 

• C++ code for the resulting HTR program 

• Final Report 

5.0     Key Personnel 

William Farris – Farris is a Senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses.  

Baron Davis is a senior Computer Engineering major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has completed relevant courses. 

Creighton Young is a senior Computer Science major in the Computer Science and Computer 

Engineering department at the University of Arkansas. He has completed relevant courses. 

Micheal Oyenekan is a senior Computer Engineering major in the Computer Science and 

Computer Engineering department at the University of Arkansas. He has completed relevant 

courses 

Nathaniel Zinda is a machine learning engineer at CGI and is the main contact for this project. 

6.0     Facilities and Equipment 

Due to the nature of the project at hand, the equipment and equipment. On the equipment 

end, personal computers will be necessary to use. For facilities, computer labs will occasionally 

be useful in the case of meetings and working together. 
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