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Abstract 

 Automatic action recognition is one of the primary tasks in video understanding. It has 
various practical applications in fields such as human behavior analysis, virtual reality, and 
action/gesture recognition. Advancement in Artificial Intelligence has resulted in the studying of 
learning techniques called deep learning. Informally, deep learning takes inspiration from the 
human brain and solves problems with neural nets. Now, in this deep learning era, there are 
many methods that have been proposed to address the problem of action/gesture recognition. The 
resultant objective for this project, using these proposed methods, is to create a stand-alone 
application such that the deep learning technology can be leveraged in the day to day lives of 
people. This is done by leveraging the Temporal Shift Module to recognize a user’s gestures and 
then subsequently controlling certain functions of a computer. 

1.0 Problem 

Today, there exists many tasks and activities among professional and private enterprises 
that because of their nature, require the use of common interfacing tools to computers, such as a 
keyboard and mouse. However, because of advancements in the fields of Artificial Intelligence 
and Computer Vision, there now exists an alternative way to interface with computers that 
renders the previous method trivial: Automatic Action Recognition. The problem itself is that of 
luxury, not of necessity. That is, in general, when using new technologies for interfacing with 
computers, the new setup (based on the new technology) then renders the previous technologies 
(and its setup) as an inadequate setup. A similar process occurred with the development of the 
mouse; the magnitude of inadequacy of the previous state of interfacing (keyboard only) was not 
necessarily realized until the next setup was in practice. And so, the problem is that with the 
existence of a new technology that could allow a new and improved interface to a computer, 
there does not exist a stand-alone application that allows the use of the new technology to do the 
interfacing. 

With a better understanding of the problem, the importance of the problem can be seen by 
the potential benefit from solving it. For example, what if every non-text inputting or selecting 
action could be executed using gestures? What if every computer system could be calibrated to 
the actions and gestures of its user such that it allows for the most intuitive use of the computer 
based on the individual user? Such propositions are vision and conjecture based but are required 
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to fully understand the importance of the fact that there does not exist a stand-alone application 
that allows for these types of scenarios.  

Like most innovative technological advances, the impact of said technologies cannot be 
understood until after the fact. For example, the printing press revolutionized the media industry 
around the 15th century. The impact might have been known to the inventor of the press, 
Johannes Gutenberg. But, the impact across the world and time was only known after the fact. 
And so, the impact of not having a solution can be found in the potential realized impact of 
having a solution to the problem. And like many other advances in technology, time will tell on 
the impact of this problem and its solution. 

2.0 Objective 

The objective of this project is to provide a stand-alone application that leverages a 
modern deep learning model to provide action/gesture recognition and computer interfacing 
options to a user such that the user can integrate the application into any work done on a 
computer. The stand-alone application consists of a simple GUI designed to display the output of 
the deep learning model (the recognized gesture) as well as the aforementioned interfacing 
options designed to help control a computer. Aside from the main objective, other objectives 
include the following: learn the basic principles of general deep learning as well as its 
applications, work as a team using the agile development cycle, apply software engineering best 
practices, and gain experience in writing detailed documentation and analysis. 

3.0 Background 

3.1 Key Concepts 

The foundational topic behind this project is deep learning. Deep learning is a solution to 
problems that “allow(s) computers to learn from experience and understand the world in terms of 
a hierarchy of concepts” whereas “each concept (is) defined through its relation to simpler 
concepts.” [7] Counterintuitively, deep learning is more adept at solving abstract problems that 
humans aren’t as good at solving (chess lines that are at least 4 moves long), whereas the inverse 
is also true; humans are better at solving less-abstract problems (ex. Object detection and 
recognition). Deep learning is quite adept at solving problems that contain large amounts of data, 
extrapolating concepts that live in that abstract domain which again might not be intuitive to 
humans [8]. The only downside is that because deep learning requires large amounts of data to 
be accurate, the domain of problems it is effective at solving is limited to those that have large 
amounts of data. At its core, deep learning allows for learning across layers by using the 
processes of gradient descent and back propagation. 

From the principles of deep learning lies a technique called the Convolutional Neural 
Network (CNN). CNNs are mainly used “in the field of pattern recognition within images” 
[9][4].  CNN solves what the more general networks called Artificial Neural Networks (ANN) 
are inefficient at. For example, ANNs can generally solve image-based recognition tasks for 
small images such as 28x28 images [9]. When operating on larger images, CNNs are more 
efficient at this task. So, for operating on images from a simple webcam where the image sizes 
range anywhere from 1920x1080 to 540x303, CNNs are the tool for the task. But at their core, 
CNNs are “compromised of neurons that self-optimize through learning” [9]. The mentioned 
self-optimization through learning is done by the deep learning processes of gradient descent and 
back propagation across layers 
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Temporal Shift Module (TSM) utilizes the temporal dimension of images to manipulate 
data to achieve 3D CNN (Convolutional Neural Network) results with 2D CNN complexity.  TSM 
is ultimately a technique using these CNN’s where some data is taken in the form of video, then 
filtered into a collection of images. From these images, the already trained deep learning model 
predicts the current gestures shown in each frame of the video, if such a gesture exists from the 
pre-trained model [1]. There is an extension of the TSM module in which gestures can be classified 
and identified in real time at the expense of only a cache holding 1/8 of current features used in 
the model [1].  

 The application of the online version of TSM uses uni-directional TSM in which there is 
only a shift in the feature data from previous frames to current frames (frames being the current 
image). This is differentiated from bi-directional TSM which uses futures frames to influence the 
current frames on the feature data. As seen in figure 2, there is a slight information difference 
between uni-directional and bi-directional models as the number of spatial dimensions grows.  

  

Figure 1: From [1]: Temporal Shift Module (TSM) performs efficient temporal modeling by moving the feature map along 
the temporal dimension. It is computationally free on top of a 2D convolution but achieves strong temporal modeling ability. 
TSM efficiently supports both offline and online video recognition. Bi-directional TSM mingles both past and future frames 

with the current frame, which is suitable for high-throughput offline video recognition. Uni-directional TSM mingles only the 
past frame with the current frame, which is suitable for low-latency online video recognition. 

 

Within the implementation of TSM, Python3, OpenCV, PyTorch and Scikit-Learn are 
used. OpenCV is an open-source library that deals with real-time computer vision. It can be used 
to process images and videos to identify different actors within frames such as objects, people, 
handwriting, and even hand gestures. OpenCV supports a wide variety of languages which 
includes Python3. 

PyTorch and Scikit-Learn are both machine learning libraries for Python that enable the 
manipulation, construction, and analysis of data. For the purview of this project, the data gathered 
from OpenCV is then translated into different array types such that it can then be used with 
PyTorch. The difference, however, between PyTorch and Scikit-Learn is that PyTorch is much 
more suitable for deep learning and is used extensively here for the implementation of the TSM 
model. However, both frameworks are used at some point within the project. 
  Specifically in this project, the TSM modifies the MobileNetV3 computational 
model and uses MobileNetV3 as the backbone for training on different datasets. The modifications 
involved are those described previously in the introduction to the TSM. MobileNetV3 was 
developed to enable learning models to be used within embedded systems – I.e MobileNetV3 can 
operate with marginal power resources compared to other models while also achieving better 
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results than, at its time, other modern models. For example, there is an increase in 4.6% accuracy 
for image classification while also reducing latency by 5% [10].  

 

3.2 Related Work 

Related to this project’s work, a team at MIT has conducted research by using TSM for 
video recognition. The MIT team’s paper [1] has a focus on the utilization of TSM to increase 
efficiency, their team implemented it with Google Maps, whereas this project’s focus is using 
gesture recognition to support a stand-alone application that is designed for an increased 
interfacing experience. 

There have also been strides to translate [2] sign language using gesture recognition in 
video processing. Elmahgiubi’s team found that a fitted glove with sensors combined with a CNN 
allowed for the recognition of most of the letters in the ASL alphabet. The ASL vocabulary is 
incredibly dependent on the subtle movement and location of the fingers. So, high accuracy and 
precision is necessary for a successful model. The fitted glove and proposed model yielded a 96% 
average accuracy as well as recognizing 20 out of 26 letters [2]. Another team proposed a similar 
system in which infrared images are used to feed to the CNN [5]. While the implementation of 
each CNN may be different, the input parameters are surely different as one team used sensor data, 
and another used infrared imaging. Tao’s team [5] achieved a 99.7% average accuracy when 
testing all 24 alphabet gestures with 5 different patients. So, while it is important to note the 
technology of CNNs, the input selection plays a role. 

 Not only are known gestures configurable in video recognition, but also a [3] team has 
discovered how to predict unknown gestures using similar techniques as well as a cognitive 
behavioral model. More related to TSM, Benitez-Garcia’s team proposed a system inspired by 
TSM in which specifically, TSM is inserted to a temporal shift network (TSN) where the TSN 
operates only on a sequence of clips within a video instead of the entire video. The final video-
level prediction is then considered a summation of accumulation of each shorter clip sequence [6].  

These other works have significance to the proposed application because they allow for 
inspiration and proof-of-concept ideas for new projects. More specifically, the development of the 
sensor fitted glove shows that wearable technology can be integrated with the ideas put forth in 
the TSM paper [1]. The advancement of one facet of technology can also lead to the development 
of innovative technologies as shown by Benitez-Garcia [6]. 

 

4.0 Design 

4.1 Requirements and/or Use Cases and/or Design Goals 

Requirements (this project must --): 

- Utilize the online TSM to perform automatic action/gesture recognition 
- Consist of a GUI that displays the following: 

o Output of the TSM execution 
o Customization settings for computer controls 
o Quality of Life settings (colors/size of different components in the GUI) 

- Be conducted using the agile development cycle as shown by the task schedule 
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- Be created using software engineering’s best practices such as ample documentation and 
abstraction 

Use Cases (this project can be used to --): 

- Operate PowerPoint using any of the supported gestures 
o This use case extends to technically any activity that uses any of the supported 

computer commands, PowerPoint is the specific activity demonstrated by this 
project 

4.2 Detailed Architecture 

Overarching, this project consists of two distinct parts – the engine and the user interface. 
The engine consists of all the computation done by the modified MobileNetV3 model when 
executing. None of this is explicitly seen by the user. The user interface consists of everything 
that is seen by the user. This includes the application window itself, the webcam output, the 
engine output, as well as multiple components that detail the different options made available to 
the user. The application’s architecture follows the methods of the Model-View-Controller 
(MVC) conventions and integrates the defined engine part with the user interface portion with 
those conventions. The user interface is designed using component abstraction and is designed so 
that the application can be expanded upon with ease at a developer’s behest. 

The technologies used in the creation of the application (not including the technologies 
used in the TSM exclusively) include Python3, Tkinter, and OpenCV where OpenCV and 
Tkinter are modules for Python3. OpenCV is used for all image capturing and processing for use 
in the computation of gesture recognition. It is also used to capture a video stream such that each 
frame can be displayed inside the user interface. Tkinter is a GUI library. Tkinter is used to 
create each interface component as well as display each frame from OpenCV. Tkinter is 
responsible for the “drawing” aspect of the MVC convention. At its core, the application 
interacts with primarily Tkinter because of its ease of access and low-level support (low level by 
Python’s standards).  

Firstly, the engine part of the application is composed of two distinct parts, data gathering 
and then data processing. Data gathering consists of retrieving a video stream from a webcam. 
This is done with OpenCV. From there, the data is transformed into the correctly shifted form to 
be used with the TSM. After that, for each frame in the video stream, the executor is called. The 
executor simply takes the trained model and then runs the model on the newly transformed data. 
The model used for the project is the default PyTorch checkpoint that was initially given for the 
TSM. However, a model that has been trained subsequently. on said checkpoint can also be used 
here. From the executor, the output is found after a processing function (which is fed the output 
of the executor) returns the current frame’s recognized gesture and the last n-gestures in the form 
of a list (the history is the list of past gestures where n is the number of frames in the past 
inclusive to the current frame). For this project, the history length is 20 elements which is the 
default configuration. When experimenting with other lengths, no difference was found in the 
efficacy of the heuristic that was applied, as will be detailed later. 

Secondly, the user interface in its design is composed of several distinct components. 
Such components include the webcam display, the engine output of the recognized gesture, a 
button to toggle between a grayscale or RGB view of the webcam, a button to enable/disable 
computer control based on the recognized gesture, a section where a user can “record” a 
sequence of gestures to calibrate the heuristic to themselves for a particular computer control, 
and a section where the user can define explicitly which gesture controls which computer 
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function. An illustration of the completed interface is below: 
 
 

 

Figure 2. The user interface displays all the implemented components which include Toggle Controls, Toggle RGB, 
Record Gestures, settings for recording gestures, and the history list of 20 gestures. 

 

Now, within the actual implementation of the above sections, the overall application 
follows the convention of the Model-View-Controller scheme. Since there exists only one view 
in the application, the implementation only explicitly uses the model and controller. The system 
of the application works in the following way. The webcam video stream is a member of the 
engine. On each iteration of the application’s runtime, the engine operates on that iteration’s 
frame that is captured from the video stream. Then, the component inside the model which 
contains the place for the webcam is fed to the webcam frame used in the engine computation for 
that iteration of the application. The model contains each component of the user interface and 
receives inputs from the controller and engine. The controller consists of the user’s input into the 
application itself, not the resulting computer control from the recognized gesture of that current 
program iteration. So, the controller feeds input actions that change or alter the state of some part 
of the model. Because of the use of the library Tkinter in the application, not all controller 
aspects of the application are explicitly in the controller class. For instance, each button 
component from Tkinter receives an “on click” parameter that determines what to do when that 
button is clicked. This is logic that would normally be implemented in the controller class. 
However, since it is already pre-defined, each button’s on click behavior is not influenced by the 
controller class but by the Tkinter module definitions. Though every controlling logic is not in 
the controller class, the application still follows the Model-View-Controller convention. 
Different than the controller class, the view class is not utilized in this project explicitly. This is 
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due to the application only containing one view. Since there are not multiple views to be 
differentiated from, adding an explicit view class to handle the one view used in the application 
only adds unneeded complexity. In its implementation, the application’s components looks and 
styles are handled automatically as enabled by Tkinter. In this case, handled simply means state 
updates for text and color/size. Because this functionality exists innately to the library, it allows 
for the avoiding of the mentioned unnecessary complexity. So all-the-while there is not an 
explicit view class used within the application, there is a view used. So, the architecture and 
implementation still follow the convention for the MVC method. 

Out of the box, the engine utilizes a PyTorch checkpoint to execute a model using the 
input video stream from the webcam that is used. However, it is possible to continue training 
using that checkpoint and then plug it into the engine. Also, it is also possible to completely 
retrain the model using a different dataset. This is significant because it allows for different 
gestures to be recognized. But, the original checkpoint is suitable for the scope of this project, so 
that is what is used in the final version of the application. However, other models were used such 
that they worked within reason in the application.  

Due to the application-specific nature of this project (controlling PowerPoint), an 
inefficiency became known when testing. Specifically, when a user would try and “swipe right” 
to get to the next slide, often the model would recognize several different gestures. Some of these 
include swiping right, two fingers swiping right, as well as swiping left when retracting the arm 
used to swipe after the swiping was finished. To solve this problem, a heuristic was designed that 
allows the application to be more efficient for the problem of controlling PowerPoint. The 
heuristic essentially “calibrates” the application to the user. This is done by recording the 
gestures executed while performing the desired action. For example, the user would emulate 
swiping right and the list of recognized gestures during that span are kept as a list. Also, the 
recognized gesture from the previous program iteration/frame is stored. Per program iteration, 
the heuristic logic is as follows: If the current recognized gesture is not the previous gesture, (for 
swiping right) if the current gesture is in the recorded/calibrated “swiping right” list and the 
previous is not, then swipe right. Else, do nothing. This ensures that only one execution of the 
computer control happens as well as ensuring that swiping right or left only occurs when the user 
truly intends to swipe right or left. 

Overall, the lesson learned came from a better understanding of the technologies that 
were used during the creation of the application. For example, in Tkinter, since there is absolute 
positioning, it is quite easy to explicitly state the position of elements given some current 
interface state. However, if that interface state were to change, the elements that used absolute 
positioning would no longer be in the correct state as desired. However, as shown in the 
implementation details previously mentioned, listing components or elements as relational to 
another component leads to easier customization of the user interface state as well as easier 
readability. This is because if there is a relation between components, there can be a hierarchy 
derived from the relation as opposed to just a large list of relation-less, distinct components. And 
from this hierarchy, position and other visual styling can easily be changed with the modification 
of a couple of components, instead of every component. So, creating the application with relating 
components was a lesson learned. Another lesson learned was that because the application only 
contains a singular view, explicitly using a View class only adds additional complexity. This is 
important because with the current vision of the application, no other view is needed. That is, the 
current display state of the user interface is the only state necessary. So, for this project, learning 
when to not add additional complexity was a lesson learned. If the application were to be 
expanded, another view would be introduced. But that is not within the purview of this project, 
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albeit a good point to mention. Lastly, as mentioned about the ability to use different models for 
execution within the engine, a point to be made is the difficulty of obtaining datasets. Because 
deep learning is data intensive, it is not always possible to have data that goes to more obscure 
gestures. So, the gestures that a model can support depends on the availability of gestures within 
datasets. So, if a very particular gesture was needed for a specific scenario, it may be difficult to 
obtain enough data necessary to train a model efficiently. But, this project relies on common 
gestures often found in datasets such as the Something-Something dataset and the Jesture dataset. 

Based on the achievement of creating an application that leverages action recognition, the 
potential impact is the integration of this application within the workflow or daily lives of 
individuals or companies. Because this project attempts to offer a better way to interface with 
computers, it is reasonable to conjecture that there exists some activity that would benefit from 
the functionality that the application from this project provides. And so, at the very least, the 
impact is the ability to conduct PowerPoint presentations with simple gestures, no hand clicker 
needed and no need for close proximity to a computer (relatively speaking). This project also 
serves as a launching point for which future work can be created, with this as a reference. 

Next, potential improvements for future works could include better recognition models 
designed for specific task use when tasks are identified. For example, instead of utilizing an 
action recognition model that is trained for many actions, perhaps a model specifically trained on 
one action could be used such that the output of the model is simply, yes or no. This could be 
helpful if applied to vehicles because the model could discern if the driver is engaged or not. 
Therefore, it could be decided of the driver was engaged or not. This could be used similarly to a 
dashcam as a defense in a court system, perhaps. But more relevant to the context of this project, 
an increased number of actions/gestures could be recognized, an increased number of possible 
computer controls could be supported, a better user interface could be supplied, and a widening 
of compatibility could be enabled. This is because the current application only works on Linux 
based systems. 

4.3 Risks 

Risk Risk Reduction 

Injury from doing an 
action/gesture 

Issue a warning on the application start to be mindful of the 
surroundings 

Not having 100% reliability 
the gesture recognition and 
application 

Apply a heuristic to better approximate for practical use. 
Also, a message will be shown explaining the application 
does not have 100% accuracy 

Having several dependencies 
might lead to conflicts on 
different machines 

A comprehensible list of dependencies and their versions will 
be made available as well as a packaged image of the 
application such that it is easy to run out of the box on 
another machine, eliminating the need to install manually, 
each dependency 

4.4 Tasks – 

1. Understand/gain background about using the hand gestures inputs and controlling outside 
applications/software. 

2. Define exactly what actions/controls will be implemented 
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3. Determine design of GUI  
4. Determine architecture for the complete application 
5. Implement basic version of GUI  
6. Implement a single gesture control with engine integration 
7. Debug basic version of application 
8. Implement a more advanced version of GUI 
9. Implement the remaining hand gesture controls 
10. Debug advanced version of application 
11. Put final changes on application and allow time for unforeseen errors 
12. Complete documentation 
13. Work on demonstration of our application 

 

4.5 Schedule –  

Tasks Dates 

1. Understand and gain background information about 
using gesture recognition to control computer functions 

2. Define what computer controls are to be implemented 
3. Determine design of the GUI 
4. Determine architecture and design of the GUI 

implementation and integration with the engine 
5. Implement the basic version of the GUI 
6. Implement a singular computer control based off 

gesture recognition 
7. Implement the rest of the defined computer controls 
8. Debug basic version of the application 
9. Implement additional GUI components 
10. Retrain the TSM on a new dataset 
11. Debug the advanced version of the application 
12. Refine the aesthetical aspect of the application 
13. Finish the documentation 
14. Complete the final presentation and practice the 

demonstration 

1. 11/14/2021 - 
11/28/2021 

2. 11/29/2021 - 
12/17/2021 

3. 1/17/2022 - 
1/24/2022 

4. 1/24 - 1/31 
5. 1/31 - 2/28 
6. 1/31 - 2/14 
7. 2/14 - 3/21 
8. 2/14 - 3/7 
9. 3/7 - 4/11 
10. 3/7 - 4/11 
11. 4/4 - 4/15 
12. 4/14 - 4/15 
13. 4/15 - 4/22 
14. 4/22 - 4/29 

 

  

  

  

  

  

4.6 Deliverables  

• Design Document: Contains a listing of each major hardware and software component 
o Hardware includes the following: webcam (with model type), and computer used 

to run the developed application 
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o Software includes the following: Linux distribution used and the developed 
application as well as all of the dependencies of the TSM 

• Python codebase for GUI application and TSM implementation 

• Presentation slides which are used for the final presentation 

• Final Report which is this current document 

• GitHub Link which contains via cloud, all of the source code used in the application 

• Team Website which contains each member’s personal website links, introduction to the 
project, as well as links to the project schedule, final report and presentation, and task list 
for this project 

 

5.0 Key Personnel 

Daniel Miao – Miao is a senior Computer Science major in the Computer Science and Computer 
Engineering Department at the University of Arkansas. He has completed Software Engineering 
courses. He has experience with AI prediction for medical patients as an intern at Arkansas State 
University. He will be responsible for assisting the bridging of the TSM application to computer 
commands.  

Josh Stadtmueller – Stadtmueller is a senior Computer Science major in the Computer Science 
and Computer Engineering Department at the University of Arkansas. He has completed Software 
Engineering and Artificial Intelligence courses. He has experience with developing front-end 
applications as an intern with Cobb-Vantress. He will assist in front-end development. 

Garrett Bartlow – Bartlow is a senior Computer Science major in the Computer Science and 
Computer Engineering Department at the University of Arkansas. He has completed Artificial 
Intelligence and Software engineering courses. He gained experience with developing back-end 
applications, cloud computing, and IoT devices while interning at Dover Fueling Solutions. He 
will be responsible primarily for implementing actions from hand gestures, however he will be 
taking a full stack approach. So, he will be involved in all aspects of the project. He will act as 
team leader. 

Jonathan Zamudio – Zamudio is a senior Computer Science major in the Computer Science and 
Computer Engineering Department at the University of Arkansas. He has completed Artificial 
Intelligence and Software Engineering courses. He has experience with machine learning through 
the NACME Google Applied Machine Learning Intensive Summer 2021 Bootcamp. He will assist 
with bridging the TSM application to the computer commands. 

Braxton Parker – Parker is a senior Computer Science major in the Computer Science and 
Computer Engineering Department at the University of Arkansas. He has completed Artificial 
Intelligence and Software engineering courses. He has experience in developing intelligent 
systems in the Unreal framework. He is responsible for bridging the TSM application to the usage 
of computer commands. 

Champion– Dr. Khoa Luu received his Ph.D. degree in Computer Science at Concordia 
University, Montreal City, Canada. His Ph.D. thesis was nominated for the Governor General 
Gold Medal in Canada. He was the valedictorian for the joint Faculty of Engineering & 
Computer Science and Faculty of Fine Arts convocation ceremony at Concordia University in 
2014. His research interests focus on several topics, including Biometrics, Image Processing, 
Computer Vision, Machine Learning, Multifactor Analysis, Correlation Filters and Compressed 
Sensing. 
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6.0 Facilities and Equipment 

The necessary equipment needed for this project is a Linux operating system, a webcam, and a 
machine that is CUDA-compatible in-order-to run the TVM module used by the application. 
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