il

UNIVERSITY#¥ARKANSAS
= e =0

University of Arkansas — CSCE Department
Capstone I — Final Proposal — Fall 2021

Designing and Simulating the Self-Assembly of DNA
Nanostructures and DNA Computers

Lindsey Albin, Ben Hughes, Kyle Sadler, Christopher Souvanouphong

Abstract

The design of DNA strands is an expensive and time-consuming process. Researchers in
the nanotechnology field waste valuable resources transforming nanostructure designs into DNA
strands. The goal of the project is to simplify the process of constructing DNA strand designs by
creating a quick and easy way for researchers to convert nanostructure tile designs into DNA

strand diagrams.

Approximately a dozen labs around the world have the capability of implementing
tile-based self-assembly. The successful implementation of this project can impact these labs by
reducing consumable and labor costs, allowing rapid development of new designs, and allowing
the quick export of a design for simulation to test strains and their stability.

1.0 Problem

DNA tile-based self-assembly is a process in which a collection of simple yet
disorganized components coalesce to form complex structures. While this happens naturally all
around us (take a snowflake for example), scientists have developed methods to artificially
manipulate matter on the atomic level to replicate this phenomenon. For example, the abstract
Tile Assembly Model (aTAM) is a high-level abstraction that ignores potential errors. The aTAM
is a mathematical model used to implement tile sets via designed DNA strands. In this model,
assembly starts from a given “seed” tile and grows non-deterministically and asynchronously.

One of the biggest issues facing researchers today when working with tile-based
self-assembly is the cost overhead and the extensive number of software needed for these
models. The current process of transforming a nanostructure design into a set of DNA strands is
tedious and requires many independent software packages. This means that researchers must
waste valuable time importing, exporting, transferring, and reformatting data. The other problem
faced is the cost of self-assembly. Ordering the DNA in a tile-based format can get expensive
very fast. If there was a way for scientists to minimize the number of errors and mismatches in
the DNA strands, it could save them thousands of dollars in the long run.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

2.0 Objective

The objective of this project is to simplify the DNA nanostructure design process. Instead of
having to use multiple independent software packages, our project will allow researchers to
easily transform an abstract nanostructure tile assembly design into a DNA strand diagram,
readable by Scadnano, with the click of a button. Scadnano is web-based software for visualizing
DNA molecules as strand diagrams. Our software will be hosted on a web server so that it is
accessible and does not require the user to manually install and compile software packages.

3.0 Background

3.1 Key Concepts

DNA Base Pairs. DNA base pairs are molecules called nucleotides, on opposite strands of the
DNA double helix. They form chemical bonds with one another and act like rungs in a ladder to
hold the two strands together. The four bases are adenine (A), cytosine (C), guanine (G), and
thymine (T). Adenine forms a pair with thymine, and guanine forms a pair with cytosine. The
binding of these pairs forms the structure of DNA.

DNA Nanotechnology. DNA nanotechnology is the study and design of DNA nanostructures.
Strands of synthetic DNA can be designed so that they bind in a controlled and predictable
process which allows arbitrary DNA structures to be created at the nanoscale. This is possible
due to two technological advancements: a detailed understanding of the DNA binding process
and the ability to manufacture synthetic DNA. Nanoscale DNA structures have applications in
fields such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure
determination, drug delivery, and synthetic biology [3].

DNA Tile Assembly. This project focuses on a DNA nanostructure fabrication process called
DNA tile assembly. In tile assembly, DNA strands are conceptually organized into rectangular
structures called tiles which are the fundamental building unit in tile assembly structures [Figure
1]. These tiles have four DNA binding domains (a, b, ¢, d) which are used to control the binding
properties of the tile and determine the shape of the fabricated nanostructure. Multiple types of
tiles can be designed so that when mixed in a solution, tiles attach to each other in a way that
builds the intended DNA nanostructure. The entire set of tile types used in an assembly is called
a tileset.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

Figure 1. Abstract DNA tile used in tile assembly.

TACTAGCT 4 4
AT

C
A AGCG T

A G A

A C

Figure 2. A single-stranded tile formed out of a single strand of DNA.

—
+———

Figure 3. A core tile which contains two additional DNA
strands which brace the structure and form its core.

DNA Tile Motifs. As tiles are merely conceptual representations of blocks of DNA binding
domains, there are many ways to implement them in actual strands of DNA. The most common
DNA tile motif is single-stranded tiles, in which each tile is physically realized as a single strand
of DNA bent back on itself [Figure 2]. The other main motif is core tiles, in which two additional
strands are added to the single-stranded tile to brace the structure and add more stability [Figure
3]. In this project, we handle both single-stranded tile and core tile motifs.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

Scadnano. Scadnano is a software package for visualizing DNA molecules as strand diagrams
and designing synthetic DNA nanostructures. It allows users to sketch out DNA nanostructures
using strand diagrams via a web-based GUI or programmatically through a Python library.
Scadnano supports exporting of the nanostructure file for coarse-grained molecular simulation,
and simulation of twist and strain on the nanostructure.

3.2 Related Work

There are many existing software applications that are related to DNA nanotechnology and
nanostructure design. When designing a tile assembly nanostructure, one of the first steps is to
create a tileset using a tile assembly simulator [5]. First, the nanostructure is divided into tiles.
The tile assembly simulator then helps simulate how a DNA tileset design will act when the tiles
are physically created out of DNA and mixed in a test tube.

Tilesets are often visualized in Scadnano which is a software program for visualizing DNA
molecules as strand diagrams [4]. While Scadnano is a useful tool, it is often time-consuming to
import tileset designs.

The specific sequences of DNA used in a tile assembly are often picked using a sequence
designer such as DNADesign [6]. However, these tools do not make it easy to combine these
sequences with a tileset structure and Scadnano, which is the problem our project will solve.

4.0 Design

4.1 Application Requirements

e Input an abstract tile assembly, its name, and its motif style attribute; a strand diagram for
motifs that contains information about the bond structure of a single tile including strands
involved and how they attach to one another; and a strand CSV file where each strand
contains a strand name, tile name, motif type, role in the motif, and the sequence

e All three inputs are required for the software to compute the DNA strand diagram

e Output a DNA strand diagram that can be downloaded by the user and/or opened on the
Scadnano website

e If the user chooses to open the computed DNA strand diagram in Scadnano, the
application must link to the Scadnano website and open the DNA strand diagram for the
user

e Software must be hosted on a web server

e A nice and clear transition from our webpage to Scadnano

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

e The user interface must be easy to understand and easy to use

e The process of inputting all of the data must be clear, organized, and provide the user
with feedback on correct and incorrect inputs

e The user interface must keep the user’s attention (show a loading bar, etc) while the

computation is taking place

4.2 High-Level Architecture

The architecture will consist of two primary components: the React user interface and the Python
backend.

User Interface

The frontend will be built using and React and will be responsible for providing the user
interface to upload the three input files: the abstract tile assembly, the tile strand diagram, and the
strand configuration CSV [Figures 4, 6]. It will be responsible for navigating the user through the
process, for providing feedback on incorrect uploads or errors, and for helping the user download
and/or open their computed DNA strand diagram. It will also be responsible for calling our
backend API to process the inputs and display the inputs and outputs of our program [Figure 5].

Python Backend

The main logic of our program will be written in Python. This design choice was made because
the Scadnano API is only accessible through a Python package. When the user uploads the input
files, the backend will be responsible for receiving the files, processing them into the resulting
strand diagram, and sending the processed file back to the user.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

Abstract Tile
Assembly

Tile Strand React — inputs ——— Python
Diagram Interface |<e—strand diagram—| Backend

Strand
Config CSV

Figure 4. Proposed application architecture.

Figure 5. Example abstract tile assembly input (left) and
resulting output strand diagram (right).

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

Name

sevsosde

Tile@10

Tilesequ

caeauence,
CAGTACAGT

;
Tile@102, CGACAAGAAG
Tile@103, ACAGTTCAGA
Tile@104, AGATTGTTCG
Tile@105, CGAATGAAGT
Tile@106, CGAACAGAGT
Tile@107, CGACTAACAC
Tile@108, GCAGATATCG
Tile@109, GACTAGCAGC
Tile@110, CGACATCAGC
Tile@111, ACAAGAGAGC
Tile@112, CGAACATCAC

reTop, T6C

saseses

€100, JAA

Top, AAAGA

ssesbelasssanress

B

Yeild
ATAGAAA

(Purification

TCCGGCA GCTGCTTTCT CTTCTTGTCG ACCCGATATTGGTCTCCCTGTT GCAGTAGTCG,10@nM,STD

TAGCCGAATTGACGCTACGAA CGACTACTGC TCTGAACTGT AGATAGGATTGTGCCCATCGA GCTCTCATGG, 10@nM,STD
ACAAACATGCAGCGTATTCGGA CCATGAGAGC CGAACAATCT TACCGTAGTGCAGGTCCAGTTT GCAGACAAGT,10@nM,STD
AAACTTCACAAGGAGCGTGAA ACTTGTCTGC ACTTCATTCG TTAAGTGGTGTCACGCTGGAA CAGACAGAGC,10@nM,STD
TCCAATACGGGATCCCGAACAA GCTCTGTCTG ACTCTGTTCG AATTTAGAGCGCCGTGCATCTT GCTCAGACTC,10@nM,STD
TTCGTAGAAACGGCTGCCTAA GAGTCTGAGC GTGTTAGTCG AACTTGTGCTGTCGAGAGAGA GGAAGACAGT, 10@nM,STD
AGTTTCAGCAGCCGAACGATTA ACTGTCTTCC CGATATCTGC AATATCCGGCTTCCCGCTAAGA ACAGATCAGT,10@nM,STD
ATGGTTAAGCCTTGCGTTTGT ACTGATCTGT GCTGCTAGTC TTTGAGTGGGTGGCTTCTCTA CTCAGACAGA, 10@nM,STD
TTTCCGGACAATCTTTGCGACA TCTGTCTGAG GCTGATGTCG ATTCCTGACCTCACCTGCCTTA ACAGTACAGC,10@nM,STD
TCTCCTTAGACAACACGGGTT GCTGTACTGT GCTCTCTTGT TACTCGACGTGATTTGCCTGA TTCATCAGCA,1@@nM,STD
ATCCGCTATGTGTCGGCAGTAT TGCTGATGAA GTGATGTTCG TAGAGCCCTGAAACCCTCAAGT CCAGATCAGC,10@nM,STD
AGTCTGTCCGGGCAAATCTTT GCTGATCTGG ACTGTACTGG TGTTGACGAAGACTCCGTGTT AGAAAGCAGC,1@@nM,STD

Hall

S

Hete-5 - Hals -2
HellaHalg)

2 2o

2 G;
o

dq

ot TCTCTC

asloesnessoes.

ot

AACA

o
H
e

s
]

-

H
o
3

=

4

=

33>
Hal

q

™

Hath-i
HaraH
20— 2

=
Hal

Halk HaloHala!
H
.

TAAATT, 2

ssssesssssekis;

Saeeesdieseene:

A5
25nM

eeesssdscseons

AACA

Figure 6. Example strand file.

4.3 Risks
Risk Risk Reduction
User concerns about research | Provide a disclaimer that strand files are never stored on our
confidentiality servers and DNA research intellectual property remains

with the user

Research liability for software
bugs

Provide a disclaimer that we are not responsible for any
incorrect results and all results should be manually checked
before using as research material.

4.4

Tasks

1. Gain proper background knowledge required for the project
a. Understand Scadnano, the software used for visualizing DNA molecules as strand
diagrams
b. Understand the process of creating DNA strands with the Abstract Tile Assembly

Model (aTAM)
2. Designing the software

a. Design the frontend with React

i The user interface we intend to create will handle the inputs of the abstract
tile assembly, strand diagram, and strand CSV file configuration. The
formats of the abstract tile assembly and strand CSV files have already
been developed. The abstract assembly file is a simple file format. It starts
with a few comments and then for every position in the assembly, the

1.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

name of the tile and its position in Z* (the 3D integer lattice) are listed. For
the project, we will not be dealing with 3D assemblies, so the third
coordinate will always be zero. The top of the strand file has the name, tile
sequence, yield, purification. Then, below is a list of the tiles [Figure 6].
The important fields for our project are the name and sequence fields. We
plan to start with the set format for the project and then modify the format
of this file to something more convenient for our program.
ii. The user interface will also display the Scadnano strand diagram by
linking to the Scadnano program and opening the file
b. Design the backend with Python
i. Finalize a list of API routes and their interfaces to
1. Upload input files
2. Access status of submitted job
3. Access the results of the program
ii. Choose a Python web framework
iii. Design DNA strand routing algorithm
3. Implementation of the software
a. For this stage, we will split into two teams: one to implement the backend and one
to implement the frontend.
b. Frontend implementation
1. Create file uploads for the abstract tile assembly file, strand diagram file,
and the strand CSV file
ii. Add user input validation and helpful error messages if the input is invalid
iii. Create a loading animation and screen while the computation is taking
place
iv. Create a button that allows the user to download the output Scadnano file
v. Create a button that allows the user to open the output Scadnano file on
the Scadnano website
vi. Create a button that takes the user back to the start page to upload more
files
c. Backend implementation
1. Setup a basic Python server that can respond to requests
ii. Write functions to receive uploaded input files
1. Write functions to parse the input abstract tile assembly, strand diagram,
and strand CSV files
iv. Write a function to take the input data and compute the resulting Scadnano
strand diagram using the Scadnano Python library
v. Write a function to write the output Scadnano data to a file
vi. Create an API route to access the status of a submitted job
vii. Create an API route to access the results of a submitted job
4. Integration of the frontend with the backend API
a. Ensure that files and input data can be uploaded from the frontend to the backend
b. Ensure that output data from the backend can be sent to the frontend both as
JSON and as a file
5. Testing the software

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

a. In this stage, we will test the software’s features with different inputs and make
design changes where needed

4.5 Schedule

Tasks Dates

Background research on the Scadnano libraries, software, etc 1/10 - 1/14
Make mockups of frontend pages in Figma 1/17 - 1/21
Setup Python server and write build scripts 1/24 - 1/28
Implement front-end file upload and input validation 1/31 -2/11
Define API routes, interfaces, and behavior 2/14 - 2/18
Write backend functions to parse input files and data 2/21 - 2/25
Design DNA strand routing algorithm 2/28 - 3/11
Implement backend API routes and functions 3/14 - 3/25
Integrate front-end interface and backend API 3/28 - 4/8

Polish user interface and add ease-of-use improvements 4/11 - 4/15
Clean up code and work on the final presentation 4/18 - 4/22
Presentation and final report 4/25 - 4/29

4.6 Deliverables

1. Design Documentation: a document outlining the architecture and tech stack of this
project and how each component works.

2. Python Backend: Python script that transforms abstract tile assemblies into DNA strand
models.

3. React Frontend: The Javascript files that make up our web interface for this project and
allow for file uploads

4. Build Scripts: scripts to build and launch the application on a web server

5. Live Web Address: URL to live version of our project

6. Final Report

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

5.0 Key Personnel

Kyle Sadler — Sadler is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He is also pursuing a Bachelor
of Science in pure mathematics from the University of Arkansas. He currently works full-time
for Pipedream, a robotics startup building underground delivery robots. He will be responsible
for the application architecture and backend.

Lindsey Albin — Lindsey is a senior Computer Science and Graphic Design major with minors
in Mathematics and Art history in the Computer Science and Computer Engineering Department
and the Graphic Design Program at the University of Arkansas. She currently works at the
McMillon Innovation Studio on campus as the student creative director and previously she
worked teaching kids to code using Kotlin and Minecraft. She has taken a class on user
experience design and computer graphics along with programming paradigms where she learned
Python. She will be responsible for the front end.

Ben Hughes — Hughes is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He has previously had an
internship with the Walt Disney Company. He is currently working on the front end / UI for a
mobile application in Mobile Programming. He has worked on Javascript and Python in the
Paradigms course. He will be responsible for the front end.

Christopher Souvanouphong — Christopher is a senior Computer Science major at the
University of Arkansas and pursuing a minor in Mathematics. He has previously developed a
mobile ordering application for a local restaurant, allowing him to gain experience with both
frontend and backend development. He will be responsible for the backend development.

Dr. Trent Rogers — Dr. Rogers is a postdoctoral researcher at Maynooth University researching
self-assembling and self-organizing systems. He was a National Science Foundation Graduate
Research Fellow and the recipient of the Doctoral Academy Fellowship as a Ph.D. student. He
graduated from the University of Arkansas with a Ph.D. in computer science in 2019.

6.0 Facilities and Equipment

Heroku Account - A Heroku account will be used to host our application.

Designing and simulating the self-assembly of DNA nanostructures and DNA computers

7.0 References

[1] DNA Nanotechnology, https://www.nature.com/articles/natrevmats201768

[2] Scadnano, https://scadnano.org/

[3] Tile Assembly Simulator, http:/self-assembly.net/mpatitz/papers/TAS-SASOW.pdf
[4] DNADesign, https://www.dna.caltech.edu/DNAdesign/

[5] Definition of base pair,
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/base-pair

https://www.nature.com/articles/natrevmats201768
https://scadnano.org/
http://self-assembly.net/mpatitz/papers/TAS-SASOW.pdf
https://www.dna.caltech.edu/DNAdesign/
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/base-pair

