

1

University of Arkansas – CSCE Department

Capstone II – Final Report – Spring 2022

Walmart: Predictive Planning, Ordering, and Monitoring

Kyle Orman, George Romano, Abigail Tee, Joshua Thornburgh, and

Margaret Turner

Abstract

Our main goal is to create a program that assists Walmart associates when ordering store

supplies. To help associates order supplies more efficiently, we will be using machine learning

(ML) to forecast the quantity needed of store supplies that are ordered regularly. This will simplify

the process of ordering these supplies, so associates can save time using the forecasting as a guide.

Associates will still have to verify that orders are correct and have the choice of removing or adding

to them as the need arises. Overall, this will increase efficiency, minimize human error, and avoid

costly emergency supply orders when associates are ordering store supplies.

1.0 Problem

Current Walmart associates order store supplies manually by planning what they need

ahead of time on a week-to-week basis. This includes handheld scanners, office equipment, plastic

bags, light bulbs, software, servers, etc. By planning these supplies manually week-to-week, it

raises opportunities for mistakes and reduces the efficiency of the associates by spending more

time on supply planning instead of their other duties. If the supplies needed were to be pre-

generated, then this could improve efficiency and reduce mistakes for employees because it

reduces the steps needed for assembling a supply order.

If a solution were to never be in place, then continuous mistakes, such as ordering too much

or too little, are likely to be made by associates in stores. Some associates can be pressed for time

and place their orders too fast and cause the orders to be inaccurate. This can also lead to associates

not having their required supplies, such as a light bulb missing in a section of the store, or a few

associates not having a handheld scanner. These mistakes are human error and resort to more

expensive emergency ordering. Solutions to this problem have been tried and failed. This is likely

because they do not keep stock numbers on store items designated for store use.

Capstone II – Final Report – Spring 2022

 2

2.0 Objective

The objective of this project is to help associates order supplies more efficiently by

forecasting what items will need to be ordered and of what quantity. Currently employees must

evaluate the need for store supplies and manually purchase the needed supplies through a catalog

available to Walmart retail store locations. Our goal is to capture the demand signal of supplies as

well as foresee delays on the orders to predictively create business supply purchase orders with

minimal intervention on behalf of the employees. It is based on trends, patterns, historical

purchases, and logistics along with the increased demand of holiday and seasonal purchasing.

While real store data is out of our reach, we will instead simulate a real store.

To achieve our objective, we trained a machine learning model in Python based on our

generated data. In total we used six years of historical weather data to generate six years of

simulated store item use. The machine learning model produces predictive versus actual order

comparisons as line graphed PDFs. Our simple web interface allows a user to navigate to the data

generator and witness the data generation process. Once this process is complete, the user can then

see the Machine Learning Predictions made.

To properly develop a machine learning model, there is first a need for data to build around.

To accurately reflect a real store, the development of a program to simulate one is needed.

Variables that affect item use would be holidays and weather, as well as the day of the week.

Weather can include extreme fluctuations in temperature, how much it rains, and if it snows. The

aim is to generate consistent data, with random variations.

3.0 Background

3.1 Key Concepts

For the front-end development, we built the graphical user-interface of a website using

HTML (Hyper Text Markup Language) and Django in Python. HTML is the backbone of any

website development process. Django is a high-level Python web framework that enables rapid

development of secure and maintainable websites. These implementations will allow the user to

interact with the website.

The back-end development will focus on how our website functions. It will lay the

foundational code that will enable the website to process the actions of the user on the front-end

and deliver the correct information in return. The technology of the back-end is a combination of

servers, applications, and databases. Our programming in this area included writing APIs, creating

libraries, working on data architecture, and writing code to interact with our database.

Additionally, we will be generating our own data for use as training data. This, among most of the

other pieces, will be done using python.

Lastly, we will use machine learning to implement our project. Machine learning is the

study of computer algorithms that can automatically improve through experience and the use of

data. We will create our own dummy data for the ML to take place.

Capstone II – Final Report – Spring 2022

 3

3.2 Related Work

Many companies are using machine learning for automated ordering. [5] In an IRJET

article, the proposed design of accomplishing an inventory management system was tagging the

warehouse components with a RFID (Radio-Frequency Identification) tag. The data these tags

hold is then backed up to the cloud for future use. From there, you can see what is and is not in

stock. This implementation method will be different than ours as we will not have stock numbers

for the items being reordered.

[1] Another article looks at artificial intelligence for inventory management. It mentions

that Amazon implemented artificial intelligence throughout their inventory operations. The article

then mentions two key implementations of artificial intelligence for inventory. These are Demand

Prediction for Inventory Management and Reinforcement Learning systems for full-inventory

management. The method that would be a better approach for what we are doing is Demand

Prediction for Inventory Management. The general idea of this method is to build a time series

prediction model that can estimate what demand will be like for the coming days across all items

in your inventory. This is what we aim to accomplish.

In the implementation of the predictive planning and ordering, Walmart representatives

mentioned they wanted a “Did you forget” pop-up when finalizing the stock order. [4] An article

describes this as a recommendation engine. This article defines a recommendation engine as,

“information filtering tools that use algorithms and data to recommend that most relevant items to

a particular user in a given context.” This will be beneficial in implementation as it will decrease

human error and increase order efficiency in checkout.

[2] An Unleased Software article, “Using Machine Learning in Inventory Management.”

discusses reducing forecasting errors. With machine learning technology, predictions can be made

using data to adjust forecasts to suit companies and account for more factors than typical forecasts.

This is important to consider when using machine learning because it can predict demand in the

future and allow the correct quantity to be purchased before it is needed.

Refocusing this project has allowed more research of related works. [3] A Mosaic Data

Science article highlights the importance of weather and its impact. It states, “Weather has a high

impact on operations in many industries, and therefore is of immense value to integrate into

strategic decision making.” Although not initially planned to be put into effect, the weather is a

great indicator of consumer presence at a store. Weather factors that we specifically are looking at

include average temperature, average daily rainfall, and average daily snowfall.

In conclusion, the research done throughout this project helped us understand the steps

needed to be taken to develop the finished product. While not all these articles and methods were

used during our implementation, it was key to research and take these methods into account.

4.0 Design

Capstone II – Final Report – Spring 2022

 4

4.1 Requirements, Use Cases, and Design Goals

Requirements –

- Website front-end

o Input fields

▪ Store number

• Restricts the ordering options to location

▪ Employee login information

• Restricts the ordering budget by employee tier

o Django - Python

▪ Useful for displaying our data generation tool

▪ Security implementation to protect data

o Home, data generator, machine learning predictions, about us pages

▪ Necessary pages for our project

- Database back-end

o A relational database

▪ PostgreSQL or equivalent

▪ Two tables needed

• One table with supply description, ID, and price

• A second table with order history information including date, item

ID quantity, store number, and a value to flag if the order was an

emergency order

• The respective IDs will be primary keys within the relational

database

o Historical supply ordering data to be provided by Walmart

▪ The data will be the basis for the machine learning model

- Machine learning model

o We tested 3 types of ML models. For the finalized model we used a gated recurrent

unit model (GRU) since it was verified through testing to be the best balance of

accuracy and execution time

o The ML model must take input. Data will be generated using item 4. Then, the ML

model will read from a CSV file produced by item 4

o The ML model must provide output. This is generated by a predictive algorithm for

supply needs. In addition, the supply needs will be manually verified by an

employee.

- Data Generation

o The entire generator is coded in python. This was due in part to its flexibility as a

data science tool and ease of use. We collected six years of weather data to generate

the necessary data for store use. What is output is an item order history from the

beginning of 2016 to the end of 2021.

Use Cases –

The primary use case of this project is for restocking and reordering Walmart store

locations with business supplies that employees/customers extensively use. The website front-end

interface will allow the user to see the data generation tool work and display machine learning

predicted results. In addition to streamlining the supply reordering process and minimizing the

Capstone II – Final Report – Spring 2022

 5

amount of time that it takes for employees to evaluate, and order needed supplies for day-to-day

operation of Walmart retail locations, the tool we will develop will allow Walmart stores to avoid

emergency supply orders for urgently needed supplies that come with increased cost.

There are two possibilities for expanding the use case once the base case is achieved. First,

we can expand the use case to restock and reorder the entire store inventory including products

and goods meant for sale to Walmart customers. A second possibility is that we can apply the

machine learning model to assist with management of corporate office supplies—this would

require different logic, but overall holidays and weather can also help predict consumption of

office products.

Design Goals –

Our design goal was to develop a system that allows the user to efficiently execute our

primary use case; to predict orders. Past weather models and holidays will supply data that will

drive a machine learning model that yields a predictive algorithm that will be used for supply

ordering and restocking. This includes a minimalist website front-end that accepts login credentials

and a database back-end that stores the weather and holiday data. The data generator tool will

produce the simulated store order history for the ML module.

4.2 Detailed Architecture

Walmart provided us with data from their test system, but it was deemed necessary to create

our own dummy data. Due to this, the focus of our project has shifted to data generation followed

by machine learning assisted predictive ordering. Now that data generation is a factor, we have

more control over what the data will look like. We can also limit the list of items available to order

and have more common descriptions rather than the repetitive and uncommon descriptions found

in Walmart’s test system data (for instance, one-hundred different battery bundles). Simplifying

our data will allow our results to make more sense to anyone observing our output, while still

having the capability to apply our solution to Walmart’s dataset. However, there must remain

common identifiers in the data. The data we are generating will include an item number, item

description, date ordered, quantity ordered, order number, and store number.

A design focus for this project is to auto-generate a list of items to be ordered for the store

to function. Items such as toilet paper, cleaners, and paper towels that employees will use

throughout the year need consistent and reliable replenishment. We are currently designing the

process for single store use. The process will be scalable so that after we successfully implement

our single store project design it will be simple to expand the project to handle multiple store

locations. Since some of the details of our project have changed since inception, the metric for

success has changed as well. We are no longer concerned with making an interface for the store

employees to access, review, and confirm orders. Instead, data generation followed by machine

learning implementation is our primary goal. The secondary goal of the project is to provide a

clean user-interface for the data generation tool and provide organized output of the results of our

predictive ordering process. Another change in our project scope is that we are no longer concerned

with “emergency orders” since, assuming our predictive ordering is correct, the occurrences of

orders of this type should be reduced and there would not be a way to avoid true emergency need

for certain items.

Capstone II – Final Report – Spring 2022

 6

Data Generation:

The data generation tool was designed to account for many variables that may affect the

quantity of any item that needs replenishment. The tool accounts for the fact that there may be

more store traffic on weekends and more store traffic on holidays throughout the year. We have

collected six years of weather data for the Fayetteville, AR area to modify item use with. The data

includes average temperature, amount of rain and snow. Currently, the tool is operated on the

command-line interface and does not take input. While the hosted webpage does operate the data

generator, the running of the machine learning is still needed to run locally as the runtime is more

than four hours and requires a great deal of calculations.

A challenging task that has repeatedly come up is the question of how to simulate a real

store. This question tasked us with understanding the variables that can affect an individual’s

shopping habits. We pose this question because our design goal was to aid associates in their

Capstone II – Final Report – Spring 2022

 7

ordering to keep the store operational. If there are no customers, then there is no reason to replace

used products. This was our baseline for understanding item use. A large hurdle was the notion

that stock numbers are not kept on these items, only how much is ordered at a given time. If stock

numbers were kept, this would simplify the predictive process.

One thing we figured was that individual items have an average use within a store. This

can obviously change from store to store. To rectify this, the data generator first randomly chooses

from a range of values to be that stores average use. Next, we give the store enough supplies to be

able to operate for around two weeks. If every day were the same, as there were no weekends, the

weather was constant, and holidays no longer existed, we would more than likely see the use of

these items as constant. Thus, the average use would in fact be the only use per day. However, this

is not the case. The need for controlled chaos becomes apparent the more data that is generated.

This is where weather and weekend checks solve some of the data's problems. First, the

weather. Using weather data collected from accuweather.com, we compiled six years of weather

data to modify with. While one year six times may have worked, we really wanted these variables

created by nature to influence our item use. With weather, there are few options for what is

forecasted. Rain, sun, snow, or something in between. The data pulled was from AccuWeather and

was for the location of Fayetteville, Arkansas. Considerations for environmental conditions will

be limited to rain, snow, and extreme temperature fluctuations for our region, but can be expanded

on later. For rain, we chose to use a 𝑛 log(𝑛) scale to determine the reduction of traffic to the store.

Using this model for weather creates a deficit value. This way if there is little rain, traffic is

unaffected, but if there is a downpour, then it is heavily affected. For snow, the same considerations

are made. In its current form, the data generator reduces traffic on the day in which it snows. This

reduction is that of a 75% of the normal use of an item.

For the weather conditions listed above; these are stored in an object list produced by

weather_input.py. The size of the list is equal to the number of days within a year, 365. If you

wanted to retrieve weather data for a certain day, you would only need to call up the index in the

list and then the attribute of the object you wanted. For rain information on the sixth day of the

year you would use weather_list[5].rain.

Second is weekend traffic. After a quick search we found that stores are often more

frequented on the weekend compared to the weekdays. The slowest days are around the middle of

the week, but the distribution of those days could be shifted around and still yield the same use

data. All that matters is the number of those low days. How we solved for which day it is was a

simple modulo calculation to keep up within seven days. Depending on the number, a store could

see increased traffic or be a tad slower.

Item and order data is created in our data generator. The program reads from a list of items,

finds the initial average for store use, gives an initial stock value, and then uses the weather data

to modify item use. Holidays are also considered and are stored as integer values in a list. Since

every day can be represented as an integer, this was the easiest way to find when holidays occur

as they can be compared to against an arrays index. Currently, a holiday occurring is a static

modifier, while it is not very realistic, this does allow us to see when major events occur. To store

this information, two object lists are used. The first is an item list and the second is the order list.

Items have many attributes; these include min/max (range for average use), item id,

shipping time, initial stock values, a rolling average for use list, and several more. Those listed

here are the most important item attributes we take into consideration. Once an item is ordered, it

Capstone II – Final Report – Spring 2022

 8

then gets stored into the object list. This may be unnecessary, but it allows for the understanding

and use of the information to be more straightforward. While the item list contains all the

information, anyone can later just send out the order list and have it contained the same contents

as the CSV’s created later in the process. With the order list, it is then sorted based on the day the

item is ordered, and then order numbers are placed on items that are all on similar days. All orders

on day eight are a part of one order number and those from day ten are another, just as an example.

Since we are concerned with representing accurate data and not the true functionality of how we

got it, this worked to serve our needs. Once order numbers are attributed, the resulting order history

is then saved to an Excel form to later be converted to csv.

The order history is created year by year, from 2016 to 2021. Each year is saved as its own

individual file and then merged once all years are complete. Once merged, the file is then split into

the respective items. If there are 19 items, then 19 csv files, with only one item to the file, are

created from the merged file. This was necessary to facilitate ease of use with the machine learning

step.

The data generator was created using the Python programming language. We chose the

Python language because of the vast number of useful Python libraries and frameworks and its

known use in data science. The flexibility of this language allowed us to try different solutions

with ease, and because it has become one of the top languages for machine learning solutions,

there was no need to switch to another language to code the second large part of our predictive

ordering solution. Python libraries included in the data generation tool to achieve the desired

functionality consist of random (allows pseudo-random number generation), requests (a simple

HTTP library), OS (allows use of operating system dependent functionality), datetime (supplies

classes for manipulation of date and time), math (provides access to mathematical functions), copy

(provides shallow and deep copy operations), and xlwt (a library for writing and formatting

information to Excel files).

Machine Learning:

The dummy data generated with our data generation tool was used as the basis for our

predictive ordering implementation. Using the Python programming language along with the

TensorFlow 2 library and Keras framework, we built and trained 3 predictive models used to

predict the quantity needed of each individual item. TensorFlow 2 was chosen for this project as

it allows for easy model building with multiple levels of abstraction. The Keras framework is an

open-source deep learning API that provides a Python interface for artificial neural networks;

using it ensured our solution will be scalable as the scope of the project grows. The combination

of TensorFlow 2 and Keras is the most widely adopted deep learning solution, so the number of

resources and examples we were able to apply ourselves is significant. We also generated excess

data that will not be used in the machine learning process to serve to check the accuracy of our

predictive model. Specifically, the most recent 10 percent of each individual item data was

reserved to compare to out predicted output. One of the benefits of being able to generate our own

data is that we were able to process multiple timeframes of data and see how the accuracy of our

predictive ordering holds over extended periods of time. This aspect turned out to be valuable since

the model required more historical data than we previously assumed to improve the accuracy of

the predictions.

We tested the three predictive models we developed using Google Colab and CSV file

containing data generated for one item. During the testing of the three predictive models, we opted

https://colab.research.google.com/drive/1YbywYf8h8OvOD-a12ATbqpcpXS9OpoZg?usp=sharing

Capstone II – Final Report – Spring 2022

 9

to use the gated recurrent unit (GRU) model due to the balance of accuracy and execution time

when quantitatively compared to the LSTM and Conv1D models. To assess whether the model

was a good fit we used the root mean squared error (RMSE) metric which considers the value

being predicted (when taking this metric into account you must decide if the value is appropriate).

The results of the testing suggested that our model functioned appropriately.

Before the data could be ingested by our finalized machine learning model, it was formatted

into time series data using the order date of each item we are tracking. The CSV file output of our

data generation tool was read and preprocessed in a portion of Python code, then the machine

learning portion of the code predicted the future order quantities of each item based on correlated

input values. The Python imports we are using include TensorFlow (Keras is included with the

TensorFlow library as well as the Keras sub-libraries we needed for our model), OS (to handle

operating system commands in Python), Pandas (a data analysis and manipulation tool), NumPy

(a Python scientific computing library), and MatPlotLib (for plotting and saving our predictions

versus the actual quantity that was reserved for testing). A Keras utility imported the dataset that

we previously created with the data generation tool, then the CSV paths for each individual item

was used to import the data into Pandas DataFrame objects so we could manipulate the data as

previously described to format our data in time series format. We created Sin and Cos functions

based on the yearly trends of our data to be used as additional input to provide more complexity

to our model. Since our prediction model relied on multiple inputs, we used a tensor as the input

to our model. A window of 7 was used form our finalized model, meaning 7 previous orders were

used to predict 1 following order. For the next predicted order, our model used the 6 previous

orders plus the one previously predicted; the prediction process continued this way until all the

reserved test data had a prediction to be compared to.

Webpage Front-End:

In addition to our data-generation tool and predictive ordering implementation we are

designing a front-end user-interface based on Django. This user-interface will be used to prompt

for the input and display the output of the data generation tool, allowing for a user to generate data

tailored to the specific inputs the user provides. The user-interface will also be utilized to display

the output from the machine learning process and any visualizations that we develop to highlight

the accuracy of the machine learning model.

The front-end component will be divided into four entities: the main, generate data,

machine learning predictions, and about us pages. All pages will be accessible from the main page.

The pages will be routed and connected using Django with Python. Django is a web framework

and application that is written in Python. It is an open-source tool used for developing front-end

applications. It has three key features that we will be using for this project: URL routing, template

engine, and security authentication.

Each page will have a button that is to be used when the user wants to navigate back to the

homepage and run the generator again or look at the machine learning predictions. The homepage

will first feature the Walmart logo and log in button in the center to give the user access to all

permissions for starting an order and accessing their order history. The goal is for each user to

have access to the data generator and to see the machine learning predictions. The page will also

feature a summary of what the project is and a button to generate data.

Capstone II – Final Report – Spring 2022

 10

The first page routed when making an order is the “Generate Data” page. It is responsible

for showing off our data generation tool. By selecting the button, it starts the tool and after it

generates data for 1000 epochs (default value), it then outputs the predicted items that need to be

ordered. This will be outputted in newly created PDF files located in the machine learning

predictions section.

Fig 1. Main page

Fig 2. Example machine learning prediction output

The machine learning predictions page shows accessible buttons for our outputs. Each

output is formatted as a PDF to show our actual vs. predicted items needed to order in graph form.

There is a button for each item that the store needs. The example above is a sample output of blank

badges ran after 1000 epochs.

Capstone II – Final Report – Spring 2022

 11

Fig 3. Machine learning predictions page

Future Works:

Here we discuss changes that could be made to enhance our predictive planning. Given

enough time, these are the recommendations and changes we would implement.

Data Generation:

There are a few functions that did not get added to the data generator. The first being the

weather API addition. An ideal use for this tool would be its flexibility in the sourced weather da

ta. While the data generator works with the weather data collected, being able to specify the time

period for weather as well as the location would be an ideal next step for the data generator.

Another aspect that was not fully realized was the use of the rolling average for the

temperature. An initial goal was to have extreme fluctuations in temperature be a deterrent to

customers visiting a store. However, this was pure speculation on our part. There were too many

factors at play to make the reasonable assumption that it was legitimate. Another reason for

breaking focus on this feature was how we recorded temperature. The data collected was an

average for the day. This means any deviation may not have ever been large enough to ever see

the scenario play out. To overcome this, one thing that could be done is take the object use from a

day to an hour. This way the program can observe specific times of day as to which times are peak

hours.

Second, building tension to a holiday. Currently, the program only has the day of the event

as the modifier for the holiday. This may not be the case as customers shop during the days leading

up to the holiday as well as the day itself. A real benefit here, though, would be actual data as to

how customers shop.

Finally, being able to accept more user input. One area that we would like to see from this

is the ability to take in outside variables. While weather would require a zip code, being able to

Capstone II – Final Report – Spring 2022

 12

request a certain number of items as well as multiple stores could be useful for variation of data.

Since the scope was limited to proof of concept, the use of a single store was sufficient evidence

of its validity.

Machine Learning:

Model hyperparameters such as the learning rate and model topology can be adjusted to

refine the machine learning model. In addition to using real world data, more data could be used

to improve the complexity of the model which would lead to greater accuracy of future predictions.

Also, a program could be developed that utilizes the trained version of the model to specifically

use the information of only the last seven orders to predict the following order; once the model is

trained with a sufficient amount of data the execution time of prediction alone would be extremely

fast.

Webpage:

Since the machine learning model currently takes about four hours to generate accurate

predictions, it is unnecessary to build a user-friendly interface while the generating data tool is

running. In the future, we want to make this process more efficient and to show our outputs better.

Currently we show what the program is doing while generating data through the command prompt,

but it is there to show that the tool is working. If future associates were to use the tool, we need to

make it an efficient process. The user would click on the button then be routed to machine learning

prediction outputs.

4.3 Risks

Risk Risk Reduction

Potential SQL injections Using prepared statements

Dropping the database Backing up regularly

Potential overordering Webpage front-end that associates can use to confirm orders

Simulated data is bad Consistent assessment of produced data

4.4 Tasks

Understand the given data

- Generating our own dummy data allows us to manipulate the data and make it more

functional for our purposes.

Creation of Data Generator

- Tool to generate data for several stores.

Capstone II – Final Report – Spring 2022

 13

- Consider weather, holiday activity, and weekend vs. weekday foot traffic

- Output in a format easily readable by the ML module

- Will eventually be able to fetch weather data for zip codes, not just a static location.

Researching machine learning

- Since our team has limited to no experience with machine learning, we will be researching

what makes an accurate ML model. Are there items that have relations? Or does it only

seem like they do?

- A longer time slot has been given to this as it is the area that will have the largest weight

for the project.

Designing the database to pull from

- Considering the large scale of data that we will be receiving; we will need to design our

database with quick queries in mind. A cluster design would be quick but would require a

lot of maintenance. A sorted design with binary search should be more than sufficient.

Designing the front-end that the user interacts with

- Initial front-end design was captured through using Canva. It was necessary to be able to

manipulate and emulate the overall design goal to group as a whole

- We will design a mock front-end that will show which items may need to be ordered. The

user will still need to confirm before the system orders.

Designing the algorithm to predict orders

- Once the research is done into ML, we will begin designing the algorithm to predict future

needs. While in the design phase, we will select a small subset of data to tweak the system.

Without the data, it is hard to say what we do and do not have.

Implement designs

- Once the database structure is complete, front-end designed, and the ML model tweaked,

we can then begin setting everything up.

- The database will need to be filled with the given data and tested for accuracy.

- The front-end will need to be implemented in such a way that form and function are

considered. Our goal for this is swiftness.

- Once the database and webpage are complete, the ML model can then be connected and

then the testing begins.

Testing

- Test the ML model on the dummy data generated in implementation

- To curb any need overordering, one concept we will consider is under performing in the

prediction. This should keep costs down and still have the capabilities of being tweaked

through the user page for final ordering.

Documentation

- Once everything is functioning, we will then compile a formal document that outlines how

the functions operate. This will include expected input/output and possible tweaks.

- These documents will include the PHP, HTML, JavaScript, Python, and SQL code and

queries that make the model operational.

Capstone II – Final Report – Spring 2022

 14

4.5 Schedule

 Description Team Members Begin End Status

Frontend

Design
Involves details pertaining to

looks and flow of the site.
Maggie, George, Abigail 6-Feb 14-Feb Complete

Integrate with Heroku to

Github

Connect Github root

directory to Heroku to have a

working build.

George 7-Feb 15-Feb Complete

Code Coding the design. Maggie, George, Abigail 17-Feb 24-Feb Complete

Subtask - Route Heroku George, Maggie 15-Feb Complete

Launch

Launching the webpage to a

hosting service. This may be

Heroku or something like it.

Maggie, George, Abigail 22-Feb 28-Feb Complete

Integration With DB

Once the initial site is coded

and running, we will then test

queries from our DB to the

site.

Maggie, George, Abigail 1-Mar 7-Mar Complete

DB

Design

Find out what is needed and

what is not needed. From

there, draw what the

relationships will be.

Josh 18-Jan 23-Jan Complete

Implement

Create the DB and insert the

given data. Update: We will

be creating our own data.

Josh 24-Jan 16-Feb Deferred

Testing

Testing integration with the

webpage. Possible

connection to the ML

module.

Josh 1-Mar 8-Mar Deferred

Trim

There may be data we do not

need. May require a rework

of the tables.

Josh 9-Mar 15-Mar Deferred

Capstone II – Final Report – Spring 2022

 15

Machine Learning

Research

What make a good model.

What libraries exist for us to

utilize.

Kyle 2-Feb 25-Feb Complete

Implement

Begin writing the code that

will process the data from the

DB. Dummy data can be

used in early versions to see

how it works.

Kyle 1-Mar 15-Mar Complete

Test
Testing of the data for early

validation.
Kyle 28-Mar 4-Apr Complete

Tweak
Any changes that need to

made can be done so here.
Kyle 5-Apr 13-Apr Complete

Data Generator

Early model
Generates data based on a

range of values.
Josh 15-Feb 22-Feb Complete

Simulate daily flow

Simulate the daily "flow" of

a store. Give estimates for

item use, shipping times, etc.

and have the model order

based on how often an item is

used.

Josh, Maggie 22-Feb 2-Mar Complete

Add weather to model

Adding weather to better

simulate natural chaos to

customer flow.

Maggie 3-Mar 10-Mar Complete

Export to Excel
Adding functionality to

export to excel for ML use.
Josh 3-Mar 10-Mar Complete

Additional Chaos

More variability that

holidays or weather does not

affect. (Shipping delays,

flash sale, etc.)

Maggie 10-Mar 17-Mar Deferred

Graphical User Interface

Allow the user to input

certain attributes to influence

data gen

Josh 28-Mar 4-Apr Deferred

Capstone II – Final Report – Spring 2022

 16

Data Gen & ML Merge

Pipeline

Automatic transfer of

generated data to the

machine learning model

Josh and Kyle 15-Apr 20-Apr Complete

Cleaning
Cleaning up code and

comments
Josh and Kyle 20-Apr 22-Apr Complete

Documentation

Website Maggie, George, Abigail Apr-20 23-Apr
 Future

works

Database Josh, Maggie Not in use

ML Kyle Apr-20 23-Apr Complete

Data Generator Josh Apr-20 23-Apr Complete

4.6 Deliverables

a. Design document: contains a listing of each major software component and any diagrams.

a. Early database design

b. The evolution of the ML model

c. Design of the web front

b. Database schema and initial data.

a. The schema is for a SQL database.

b. Initial data is six months of data provided by Walmart for ML model building.

c. New data is generated by our data generator

c. Web site code: including front-end and connected back-end/database interface code.

a. These will include the Python and HTML code for the webpages.

d. Machine Learning code and analysis.

a. The language of choice for our ML model will be python.

e. Data Generator

a. How to use

b. What it produces

c. Limitations and things that would be changed in future iterations

f. Final report

Capstone II – Final Report – Spring 2022

 17

a. A detailed analysis and breakdown of the ML model, how the data generator

functions, and the web front.

5.0 Key Personnel

Kyle Orman – Orman is a senior Computer Engineering major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed Programming

Foundations I and II, Programming Paradigms and Software Engineering which are relevant to the

software design aspects of this project. His professional experience as a broadcast engineer will be

useful for creative problem solving and logistics tasks. During this project he will be responsible

for machine learning research and implementation.

Josh Thornburgh – Thornburgh is a senior Computer Science major in the Computer Science

and Computer Engineering Department at the University of Arkansas. He has completed the

following relevant courses: Database Management Systems, Computer Security, Cryptography,

Information Retrieval, Programming Paradigms, Algorithms, Software Engineering, and

Programming Foundations I and II. During this project he will be responsible for the creation of

the data generator.

Abigail Tee – Tee is a senior Computer Science major in the Computer Science and Computer

Engineering Department at the University of Arkansas. She has completed Programming

Foundations I and II, Programming Paradigms, Database Management Systems, and Software

Engineering. During this project she will be responsible for front-end development.

George Romano – Romano is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed relevant

courses such as Programming Foundations I and II, Programming Paradigms, Database

Management Systems, Software Engineering, Mobile Programming, etc. He will be working on

front-end development for the project.

Margaret Turner – Turner is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. She has completed relevant

courses. Relevant courses she has completed are as follows: Database Management Systems,

Programming Paradigms, Information Retrieval, and Software Engineering. She worked an

Information Technology internship the summer of 2021 at Texas AirSystems. She will be working

on the front-end and back-end development.

Dipika Mohapatra – Our industry point of contact. She works for Walmart as a software

developer.

Capstone II – Final Report – Spring 2022

 18

Aneshkumar Tadi and Prasoon Anand –Walmart technical architect and Walmart tech lead in

Bangalore, respectively. They will assist our project by providing technical support and the data

we will use to populate our database.

6.0 Facilities and Equipment

The scope of this project is primarily focused on software design and implementation. We

will not need facilities and equipment apart from personal devices to research and code with. We

used Heroku to host our web application with a PostgreSQL database containing our generated

supply order data. Everyone in the group must have access to a computer with an internet

connection so they can participate in the research, design, and coding of the project. We will be

using a database containing computer generated supply chain data and ML model developed in

python to produce the predictive algorithm that will be utilized to forecast business supply orders

for Walmart store locations. We will utilize the task management software Trello to assign

individual tasks and keep to our proposed schedule. No physical location or facility is required to

achieve the goals of this project.

7.0 References

[1] AI, Remi. “Artificial Intelligence for Inventory Management.” Medium, Medium, 25 Sept.

2019, https://medium.com/@RemiStudios/artificial-intelligence-for-inventory-

management-c8a9c0c2a694.

[2] Chan, Melanie. “Using Machine Learning in Inventory Management.” Unleashed Software, 20

Apr. 2021, https://www.unleashedsoftware.com/blog/using-machine-learning-inventory-

management.

[3] “Fusing Weather Data into Machine Learning Predictions.” Mosaic Data Science, 25 Oct.

2021, https://mosaicdatascience.com/2020/03/22/fusing-weather-data-into-machine-

learning-predictions/.

[4] Gaspar, By: Huba, et al. “10 Product Recommendation Techniques to Improve UX &

Conversions.” CXL, 25 Sept. 2020, https://cxl.com/blog/product-recommendations/.

[5] Tambe, Prof. Dr. “Review of Inventory Management System for Warehouse.” International

Journal for Research in Applied Science and Engineering Technology, vol. 7, no. 6, 2019,

pp. 1912–1915., https://doi.org/10.22214/ijraset.2019.6320.

https://medium.com/@RemiStudios/artificial-intelligence-for-inventory-management-c8a9c0c2a694
https://medium.com/@RemiStudios/artificial-intelligence-for-inventory-management-c8a9c0c2a694
https://www.unleashedsoftware.com/blog/using-machine-learning-inventory-management
https://www.unleashedsoftware.com/blog/using-machine-learning-inventory-management
https://mosaicdatascience.com/2020/03/22/fusing-weather-data-into-machine-learning-predictions/
https://mosaicdatascience.com/2020/03/22/fusing-weather-data-into-machine-learning-predictions/
https://cxl.com/blog/product-recommendations/
https://doi.org/10.22214/ijraset.2019.6320

