
 

1 

 

 
University of Arkansas – CSCE Department 

Capstone II – Final Report – Spring 2022 

Walmart: Predictive Planning, Ordering, and Monitoring 

Kyle Orman, George Romano, Abigail Tee, Joshua Thornburgh, and 

Margaret Turner 

 

Abstract 

Our main goal is to create a program that assists Walmart associates when ordering store 

supplies. To help associates order supplies more efficiently, we will be using machine learning 

(ML) to forecast the quantity needed of store supplies that are ordered regularly. This will simplify 

the process of ordering these supplies, so associates can save time using the forecasting as a guide. 

Associates will still have to verify that orders are correct and have the choice of removing or adding 

to them as the need arises. Overall, this will increase efficiency, minimize human error, and avoid 

costly emergency supply orders when associates are ordering store supplies.  

 

1.0 Problem 

Current Walmart associates order store supplies manually by planning what they need 

ahead of time on a week-to-week basis. This includes handheld scanners, office equipment, plastic 

bags, light bulbs, software, servers, etc. By planning these supplies manually week-to-week, it 

raises opportunities for mistakes and reduces the efficiency of the associates by spending more 

time on supply planning instead of their other duties. If the supplies needed were to be pre-

generated, then this could improve efficiency and reduce mistakes for employees because it 

reduces the steps needed for assembling a supply order. 

If a solution were to never be in place, then continuous mistakes, such as ordering too much 

or too little, are likely to be made by associates in stores. Some associates can be pressed for time 

and place their orders too fast and cause the orders to be inaccurate. This can also lead to associates 

not having their required supplies, such as a light bulb missing in a section of the store, or a few 

associates not having a handheld scanner. These mistakes are human error and resort to more 

expensive emergency ordering. Solutions to this problem have been tried and failed. This is likely 

because they do not keep stock numbers on store items designated for store use.  
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2.0 Objective 

The objective of this project is to help associates order supplies more efficiently by 

forecasting what items will need to be ordered and of what quantity. Currently employees must 

evaluate the need for store supplies and manually purchase the needed supplies through a catalog 

available to Walmart retail store locations. Our goal is to capture the demand signal of supplies as 

well as foresee delays on the orders to predictively create business supply purchase orders with 

minimal intervention on behalf of the employees. It is based on trends, patterns, historical 

purchases, and logistics along with the increased demand of holiday and seasonal purchasing. 

While real store data is out of our reach, we will instead simulate a real store. 

To achieve our objective, we trained a machine learning model in Python based on our 

generated data. In total we used six years of historical weather data to generate six years of 

simulated store item use. The machine learning model produces predictive versus actual order 

comparisons as line graphed PDFs. Our simple web interface allows a user to navigate to the data 

generator and witness the data generation process. Once this process is complete, the user can then 

see the Machine Learning Predictions made.  

To properly develop a machine learning model, there is first a need for data to build around. 

To accurately reflect a real store, the development of a program to simulate one is needed. 

Variables that affect item use would be holidays and weather, as well as the day of the week. 

Weather can include extreme fluctuations in temperature, how much it rains, and if it snows. The 

aim is to generate consistent data, with random variations. 

 

3.0 Background 

 

3.1 Key Concepts  

For the front-end development, we built the graphical user-interface of a website using 

HTML (Hyper Text Markup Language) and Django in Python. HTML is the backbone of any 

website development process. Django is a high-level Python web framework that enables rapid 

development of secure and maintainable websites. These implementations will allow the user to 

interact with the website. 

The back-end development will focus on how our website functions. It will lay the 

foundational code that will enable the website to process the actions of the user on the front-end 

and deliver the correct information in return. The technology of the back-end is a combination of 

servers, applications, and databases. Our programming in this area included writing APIs, creating 

libraries, working on data architecture, and writing code to interact with our database. 

Additionally, we will be generating our own data for use as training data. This, among most of the 

other pieces, will be done using python. 

Lastly, we will use machine learning to implement our project. Machine learning is the 

study of computer algorithms that can automatically improve through experience and the use of 

data. We will create our own dummy data for the ML to take place. 
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3.2 Related Work 

Many companies are using machine learning for automated ordering. [5] In an IRJET 

article, the proposed design of accomplishing an inventory management system was tagging the 

warehouse components with a RFID (Radio-Frequency Identification) tag. The data these tags 

hold is then backed up to the cloud for future use. From there, you can see what is and is not in 

stock. This implementation method will be different than ours as we will not have stock numbers 

for the items being reordered.  

[1] Another article looks at artificial intelligence for inventory management. It mentions 

that Amazon implemented artificial intelligence throughout their inventory operations. The article 

then mentions two key implementations of artificial intelligence for inventory. These are Demand 

Prediction for Inventory Management and Reinforcement Learning systems for full-inventory 

management. The method that would be a better approach for what we are doing is Demand 

Prediction for Inventory Management. The general idea of this method is to build a time series 

prediction model that can estimate what demand will be like for the coming days across all items 

in your inventory. This is what we aim to accomplish. 

In the implementation of the predictive planning and ordering, Walmart representatives 

mentioned they wanted a “Did you forget” pop-up when finalizing the stock order. [4] An article 

describes this as a recommendation engine. This article defines a recommendation engine as, 

“information filtering tools that use algorithms and data to recommend that most relevant items to 

a particular user in a given context.” This will be beneficial in implementation as it will decrease 

human error and increase order efficiency in checkout.   

[2] An Unleased Software article, “Using Machine Learning in Inventory Management.” 

discusses reducing forecasting errors. With machine learning technology, predictions can be made 

using data to adjust forecasts to suit companies and account for more factors than typical forecasts. 

This is important to consider when using machine learning because it can predict demand in the 

future and allow the correct quantity to be purchased before it is needed.  

Refocusing this project has allowed more research of related works. [3] A Mosaic Data 

Science article highlights the importance of weather and its impact. It states, “Weather has a high 

impact on operations in many industries, and therefore is of immense value to integrate into 

strategic decision making.” Although not initially planned to be put into effect, the weather is a 

great indicator of consumer presence at a store. Weather factors that we specifically are looking at 

include average temperature, average daily rainfall, and average daily snowfall. 

In conclusion, the research done throughout this project helped us understand the steps 

needed to be taken to develop the finished product. While not all these articles and methods were 

used during our implementation, it was key to research and take these methods into account.  

 

4.0 Design 
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4.1 Requirements, Use Cases, and Design Goals 

Requirements – 

- Website front-end 

o Input fields 

▪ Store number 

• Restricts the ordering options to location 

▪ Employee login information 

• Restricts the ordering budget by employee tier  

o Django - Python 

▪ Useful for displaying our data generation tool 

▪ Security implementation to protect data 

o Home, data generator, machine learning predictions, about us pages 

▪ Necessary pages for our project 

- Database back-end 

o A relational database 

▪ PostgreSQL or equivalent 

▪ Two tables needed 

• One table with supply description, ID, and price 

• A second table with order history information including date, item 

ID quantity, store number, and a value to flag if the order was an 

emergency order 

• The respective IDs will be primary keys within the relational 

database 

o Historical supply ordering data to be provided by Walmart 

▪ The data will be the basis for the machine learning model 

- Machine learning model 

o We tested 3 types of ML models. For the finalized model we used a gated recurrent 

unit model (GRU) since it was verified through testing to be the best balance of 

accuracy and execution time 

o The ML model must take input. Data will be generated using item 4.  Then, the ML 

model will read from a CSV file produced by item 4 

o The ML model must provide output. This is generated by a predictive algorithm for 

supply needs. In addition, the supply needs will be manually verified by an 

employee.  

- Data Generation  

o The entire generator is coded in python. This was due in part to its flexibility as a 

data science tool and ease of use. We collected six years of weather data to generate 

the necessary data for store use. What is output is an item order history from the 

beginning of 2016 to the end of 2021. 

Use Cases – 

The primary use case of this project is for restocking and reordering Walmart store 

locations with business supplies that employees/customers extensively use. The website front-end 

interface will allow the user to see the data generation tool work and display machine learning 

predicted results. In addition to streamlining the supply reordering process and minimizing the 
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amount of time that it takes for employees to evaluate, and order needed supplies for day-to-day 

operation of Walmart retail locations, the tool we will develop will allow Walmart stores to avoid 

emergency supply orders for urgently needed supplies that come with increased cost. 

There are two possibilities for expanding the use case once the base case is achieved. First, 

we can expand the use case to restock and reorder the entire store inventory including products 

and goods meant for sale to Walmart customers. A second possibility is that we can apply the 

machine learning model to assist with management of corporate office supplies—this would 

require different logic, but overall holidays and weather can also help predict consumption of 

office products.  

 

Design Goals –  

Our design goal was to develop a system that allows the user to efficiently execute our 

primary use case; to predict orders. Past weather models and holidays will supply data that will 

drive a machine learning model that yields a predictive algorithm that will be used for supply 

ordering and restocking. This includes a minimalist website front-end that accepts login credentials 

and a database back-end that stores the weather and holiday data. The data generator tool will 

produce the simulated store order history for the ML module.  

4.2 Detailed Architecture 

Walmart provided us with data from their test system, but it was deemed necessary to create 

our own dummy data. Due to this, the focus of our project has shifted to data generation followed 

by machine learning assisted predictive ordering. Now that data generation is a factor, we have 

more control over what the data will look like. We can also limit the list of items available to order 

and have more common descriptions rather than the repetitive and uncommon descriptions found 

in Walmart’s test system data (for instance, one-hundred different battery bundles). Simplifying 

our data will allow our results to make more sense to anyone observing our output, while still 

having the capability to apply our solution to Walmart’s dataset. However, there must remain 

common identifiers in the data. The data we are generating will include an item number, item 

description, date ordered, quantity ordered, order number, and store number. 

A design focus for this project is to auto-generate a list of items to be ordered for the store 

to function. Items such as toilet paper, cleaners, and paper towels that employees will use 

throughout the year need consistent and reliable replenishment. We are currently designing the 

process for single store use. The process will be scalable so that after we successfully implement 

our single store project design it will be simple to expand the project to handle multiple store 

locations. Since some of the details of our project have changed since inception, the metric for 

success has changed as well. We are no longer concerned with making an interface for the store 

employees to access, review, and confirm orders. Instead, data generation followed by machine 

learning implementation is our primary goal. The secondary goal of the project is to provide a 

clean user-interface for the data generation tool and provide organized output of the results of our 

predictive ordering process. Another change in our project scope is that we are no longer concerned 

with “emergency orders” since, assuming our predictive ordering is correct, the occurrences of 

orders of this type should be reduced and there would not be a way to avoid true emergency need 

for certain items. 
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Data Generation: 

The data generation tool was designed to account for many variables that may affect the 

quantity of any item that needs replenishment. The tool accounts for the fact that there may be 

more store traffic on weekends and more store traffic on holidays throughout the year. We have 

collected six years of weather data for the Fayetteville, AR area to modify item use with. The data 

includes average temperature, amount of rain and snow. Currently, the tool is operated on the 

command-line interface and does not take input. While the hosted webpage does operate the data 

generator, the running of the machine learning is still needed to run locally as the runtime is more 

than four hours and requires a great deal of calculations.  

 

 

A challenging task that has repeatedly come up is the question of how to simulate a real 

store. This question tasked us with understanding the variables that can affect an individual’s 

shopping habits. We pose this question because our design goal was to aid associates in their 
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ordering to keep the store operational. If there are no customers, then there is no reason to replace 

used products. This was our baseline for understanding item use. A large hurdle was the notion 

that stock numbers are not kept on these items, only how much is ordered at a given time. If stock 

numbers were kept, this would simplify the predictive process.  

One thing we figured was that individual items have an average use within a store. This 

can obviously change from store to store. To rectify this, the data generator first randomly chooses 

from a range of values to be that stores average use. Next, we give the store enough supplies to be 

able to operate for around two weeks. If every day were the same, as there were no weekends, the 

weather was constant, and holidays no longer existed, we would more than likely see the use of 

these items as constant. Thus, the average use would in fact be the only use per day. However, this 

is not the case. The need for controlled chaos becomes apparent the more data that is generated.  

This is where weather and weekend checks solve some of the data's problems. First, the 

weather. Using weather data collected from accuweather.com, we compiled six years of weather 

data to modify with. While one year six times may have worked, we really wanted these variables 

created by nature to influence our item use. With weather, there are few options for what is 

forecasted. Rain, sun, snow, or something in between. The data pulled was from AccuWeather and 

was for the location of Fayetteville, Arkansas. Considerations for environmental conditions will 

be limited to rain, snow, and extreme temperature fluctuations for our region, but can be expanded 

on later. For rain, we chose to use a 𝑛 log(𝑛) scale to determine the reduction of traffic to the store. 

Using this model for weather creates a deficit value. This way if there is little rain, traffic is 

unaffected, but if there is a downpour, then it is heavily affected. For snow, the same considerations 

are made. In its current form, the data generator reduces traffic on the day in which it snows. This 

reduction is that of a 75% of the normal use of an item.  

For the weather conditions listed above; these are stored in an object list produced by 

weather_input.py. The size of the list is equal to the number of days within a year, 365. If you 

wanted to retrieve weather data for a certain day, you would only need to call up the index in the 

list and then the attribute of the object you wanted. For rain information on the sixth day of the 

year you would use weather_list[5].rain.  

Second is weekend traffic. After a quick search we found that stores are often more 

frequented on the weekend compared to the weekdays. The slowest days are around the middle of 

the week, but the distribution of those days could be shifted around and still yield the same use 

data. All that matters is the number of those low days. How we solved for which day it is was a 

simple modulo calculation to keep up within seven days. Depending on the number, a store could 

see increased traffic or be a tad slower.  

Item and order data is created in our data generator. The program reads from a list of items, 

finds the initial average for store use, gives an initial stock value, and then uses the weather data 

to modify item use. Holidays are also considered and are stored as integer values in a list. Since 

every day can be represented as an integer, this was the easiest way to find when holidays occur 

as they can be compared to against an arrays index. Currently, a holiday occurring is a static 

modifier, while it is not very realistic, this does allow us to see when major events occur. To store 

this information, two object lists are used. The first is an item list and the second is the order list.  

Items have many attributes; these include min/max (range for average use), item id, 

shipping time, initial stock values, a rolling average for use list, and several more. Those listed 

here are the most important item attributes we take into consideration. Once an item is ordered, it 
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then gets stored into the object list. This may be unnecessary, but it allows for the understanding 

and use of the information to be more straightforward. While the item list contains all the 

information, anyone can later just send out the order list and have it contained the same contents 

as the CSV’s created later in the process. With the order list, it is then sorted based on the day the 

item is ordered, and then order numbers are placed on items that are all on similar days. All orders 

on day eight are a part of one order number and those from day ten are another, just as an example. 

Since we are concerned with representing accurate data and not the true functionality of how we 

got it, this worked to serve our needs. Once order numbers are attributed, the resulting order history 

is then saved to an Excel form to later be converted to csv.  

The order history is created year by year, from 2016 to 2021. Each year is saved as its own 

individual file and then merged once all years are complete. Once merged, the file is then split into 

the respective items. If there are 19 items, then 19 csv files, with only one item to the file, are 

created from the merged file. This was necessary to facilitate ease of use with the machine learning 

step.  

The data generator was created using the Python programming language. We chose the 

Python language because of the vast number of useful Python libraries and frameworks and its 

known use in data science. The flexibility of this language allowed us to try different solutions 

with ease, and because it has become one of the top languages for machine learning solutions, 

there was no need to switch to another language to code the second large part of our predictive 

ordering solution. Python libraries included in the data generation tool to achieve the desired 

functionality consist of random (allows pseudo-random number generation), requests (a simple 

HTTP library), OS (allows use of operating system dependent functionality), datetime (supplies 

classes for manipulation of date and time), math (provides access to mathematical functions), copy 

(provides shallow and deep copy operations), and xlwt (a library for writing and formatting 

information to Excel files).  

Machine Learning: 

The dummy data generated with our data generation tool was used as the basis for our 

predictive ordering implementation. Using the Python programming language along with the 

TensorFlow 2 library and Keras framework, we built and trained 3 predictive models used to 

predict the quantity needed of each individual item. TensorFlow 2 was chosen for this project as 

it allows for easy model building with multiple levels of abstraction. The Keras framework is an 

open-source deep learning API that provides a  Python interface for artificial neural networks; 

using it ensured our solution will be scalable as the scope of the project grows. The combination 

of TensorFlow 2 and Keras is the most widely adopted deep learning solution, so the number of 

resources and examples we were able to apply ourselves is significant. We also generated excess 

data that will not be used in the machine learning process to serve to check the accuracy of our 

predictive model. Specifically, the most recent 10 percent of  each individual item data was 

reserved to compare to out predicted output. One of the benefits of being able to generate our own 

data is that we were able to process multiple timeframes of data and see how the accuracy of our 

predictive ordering holds over extended periods of time. This aspect turned out to be valuable since 

the model required more historical data than we previously assumed to improve the accuracy of 

the predictions. 

We tested the three predictive models we developed using Google Colab and CSV file 

containing data generated for one item. During the testing of the three predictive models, we opted 

https://colab.research.google.com/drive/1YbywYf8h8OvOD-a12ATbqpcpXS9OpoZg?usp=sharing
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to use the gated recurrent unit (GRU) model due to the balance of accuracy and execution time 

when quantitatively compared to the LSTM and Conv1D models. To assess whether the model 

was a good fit we used the root mean squared error (RMSE) metric which considers the value 

being predicted (when taking this metric into account you must decide if the value is appropriate). 

The results of the testing suggested that our model functioned appropriately. 

Before the data could be ingested by our finalized machine learning model, it was formatted 

into time series data using the order date of each item we are tracking. The CSV file output of our 

data generation tool was read and preprocessed in a portion of Python code, then the machine 

learning portion of the code predicted the future order quantities of each item based on correlated 

input values. The Python imports we are using include TensorFlow (Keras is included with the 

TensorFlow library as well as the Keras sub-libraries we needed for our model), OS (to handle 

operating system commands in Python), Pandas (a data analysis and manipulation tool), NumPy 

(a Python scientific computing library), and MatPlotLib (for plotting and saving our predictions 

versus the actual quantity that was reserved for testing). A Keras utility imported the dataset that 

we previously created with the data generation tool, then the CSV paths for each individual item 

was used to import the data into Pandas DataFrame objects so we could manipulate the data as 

previously described to format our data in time series format. We created Sin and Cos functions 

based on the yearly trends of our data to be used as additional input to provide more complexity 

to our model. Since our prediction model relied on multiple inputs, we used a tensor as the input 

to our model. A window of 7 was used form our finalized model, meaning 7 previous orders were 

used to predict 1 following order. For the next predicted order, our model used the 6 previous 

orders plus the one previously predicted; the prediction process continued this way until all the 

reserved test data had a prediction to be compared to. 

 

Webpage Front-End: 

In addition to our data-generation tool and predictive ordering implementation we are 

designing a front-end user-interface based on Django. This user-interface will be used to prompt 

for the input and display the output of the data generation tool, allowing for a user to generate data 

tailored to the specific inputs the user provides. The user-interface will also be utilized to display 

the output from the machine learning process and any visualizations that we develop to highlight 

the accuracy of the machine learning model.  

The front-end component will be divided into four entities: the main, generate data, 

machine learning predictions, and about us pages. All pages will be accessible from the main page. 

The pages will be routed and connected using Django with Python. Django is a web framework 

and application that is written in Python. It is an open-source tool used for developing front-end 

applications. It has three key features that we will be using for this project: URL routing, template 

engine, and security authentication. 

Each page will have a button that is to be used when the user wants to navigate back to the 

homepage and run the generator again or look at the machine learning predictions. The homepage 

will first feature the Walmart logo and log in button in the center to give the user access to all 

permissions for starting an order and accessing their order history. The goal is for each user to 

have access to the data generator and to see the machine learning predictions. The page will also 

feature a summary of what the project is and a button to generate data. 



Capstone II – Final Report – Spring 2022 

 10 

The first page routed when making an order is the “Generate Data” page. It is responsible 

for showing off our data generation tool. By selecting the button, it starts the tool and after it 

generates data for 1000 epochs (default value), it then outputs the predicted items that need to be 

ordered. This will be outputted in newly created PDF files located in the machine learning 

predictions section.  

 

   

Fig 1. Main page 

 

Fig 2. Example machine learning prediction output 

 

The machine learning predictions page shows accessible buttons for our outputs. Each 

output is formatted as a PDF to show our actual vs. predicted items needed to order in graph form. 

There is a button for each item that the store needs. The example above is a sample output of blank 

badges ran after 1000 epochs. 
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Fig 3. Machine learning predictions page 

 

 

Future Works: 

Here we discuss changes that could be made to enhance our predictive planning. Given 

enough time, these are the recommendations and changes we would implement.  

 

Data Generation: 

There are a few functions that did not get added to the data generator. The first being the 

weather API addition. An ideal use for this tool would be its flexibility in the sourced weather da 

ta. While the data generator works with the weather data collected, being able to specify the time 

period for weather as well as the location would be an ideal next step for the data generator.  

Another aspect that was not fully realized was the use of the rolling average for the 

temperature. An initial goal was to have extreme fluctuations in temperature be a deterrent to 

customers visiting a store. However, this was pure speculation on our part. There were too many 

factors at play to make the reasonable assumption that it was legitimate. Another reason for 

breaking focus on this feature was how we recorded temperature. The data collected was an 

average for the day. This means any deviation may not have ever been large enough to ever see 

the scenario play out. To overcome this, one thing that could be done is take the object use from a 

day to an hour. This way the program can observe specific times of day as to which times are peak 

hours.  

Second, building tension to a holiday. Currently, the program only has the day of the event 

as the modifier for the holiday. This may not be the case as customers shop during the days leading 

up to the holiday as well as the day itself. A real benefit here, though, would be actual data as to 

how customers shop.  

Finally, being able to accept more user input. One area that we would like to see from this 

is the ability to take in outside variables. While weather would require a zip code, being able to 
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request a certain number of items as well as multiple stores could be useful for variation of data. 

Since the scope was limited to proof of concept, the use of a single store was sufficient evidence 

of its validity.  

 

Machine Learning: 

Model hyperparameters such as the learning rate and model topology can be adjusted to 

refine the machine learning model. In addition to using real world data, more data could be used 

to improve the complexity of the model which would lead to greater accuracy of future predictions. 

Also, a program could be developed that utilizes the trained version of the model to specifically 

use the information of only the last seven orders to predict the following order; once the model is 

trained with a sufficient amount of data the execution time of prediction alone would be extremely 

fast. 

 

Webpage: 

Since the machine learning model currently takes about four hours to generate accurate 

predictions, it is unnecessary to build a user-friendly interface while the generating data tool is 

running. In the future, we want to make this process more efficient and to show our outputs better. 

Currently we show what the program is doing while generating data through the command prompt, 

but it is there to show that the tool is working. If future associates were to use the tool, we need to 

make it an efficient process. The user would click on the button then be routed to machine learning 

prediction outputs. 

 

4.3 Risks 

Risk Risk Reduction 

Potential SQL injections Using prepared statements 

Dropping the database Backing up regularly 

Potential overordering Webpage front-end that associates can use to confirm orders 

Simulated data is bad Consistent assessment of produced data 

 

4.4 Tasks  

Understand the given data 

- Generating our own dummy data allows us to manipulate the data and make it more 

functional for our purposes.  

Creation of Data Generator 

- Tool to generate data for several stores. 
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- Consider weather, holiday activity, and weekend vs. weekday foot traffic 

- Output in a format easily readable by the ML module 

- Will eventually be able to fetch weather data for zip codes, not just a static location. 

Researching machine learning 

- Since our team has limited to no experience with machine learning, we will be researching 

what makes an accurate ML model. Are there items that have relations? Or does it only 

seem like they do? 

- A longer time slot has been given to this as it is the area that will have the largest weight 

for the project. 

Designing the database to pull from 

- Considering the large scale of data that we will be receiving; we will need to design our 

database with quick queries in mind. A cluster design would be quick but would require a 

lot of maintenance. A sorted design with binary search should be more than sufficient.  

Designing the front-end that the user interacts with 

- Initial front-end design was captured through using Canva. It was necessary to be able to 

manipulate and emulate the overall design goal to group as a whole  

- We will design a mock front-end that will show which items may need to be ordered. The 

user will still need to confirm before the system orders.  

Designing the algorithm to predict orders 

- Once the research is done into ML, we will begin designing the algorithm to predict future 

needs. While in the design phase, we will select a small subset of data to tweak the system. 

Without the data, it is hard to say what we do and do not have. 

Implement designs 

- Once the database structure is complete, front-end designed, and the ML model tweaked, 

we can then begin setting everything up.  

- The database will need to be filled with the given data and tested for accuracy.  

- The front-end will need to be implemented in such a way that form and function are 

considered. Our goal for this is swiftness. 

- Once the database and webpage are complete, the ML model can then be connected and 

then the testing begins. 

Testing 

- Test the ML model on the dummy data generated in implementation  

- To curb any need overordering, one concept we will consider is under performing in the 

prediction. This should keep costs down and still have the capabilities of being tweaked 

through the user page for final ordering.  

Documentation 

- Once everything is functioning, we will then compile a formal document that outlines how 

the functions operate. This will include expected input/output and possible tweaks. 

- These documents will include the PHP, HTML, JavaScript, Python, and SQL code and 

queries that make the model operational.  
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4.5 Schedule  

  Description Team Members Begin End Status 

Frontend           

Design 
Involves details pertaining to 

looks and flow of the site. 
Maggie, George, Abigail 6-Feb 14-Feb Complete 

Integrate with Heroku to 

Github 

Connect Github root 

directory to Heroku to have a 

working build. 

George 7-Feb 15-Feb Complete 

Code Coding the design. Maggie, George, Abigail 17-Feb 24-Feb Complete 

Subtask - Route Heroku   George, Maggie 15-Feb   Complete 

Launch 

Launching the webpage to a 

hosting service. This may be 

Heroku or something like it. 

Maggie, George, Abigail 22-Feb 28-Feb Complete 

Integration With DB 

Once the initial site is coded 

and running, we will then test 

queries from our DB to the 

site. 

Maggie, George, Abigail 1-Mar 7-Mar Complete 

            

DB           

Design 

Find out what is needed and 

what is not needed. From 

there, draw what the 

relationships will be. 

Josh 18-Jan 23-Jan Complete 

Implement 

Create the DB and insert the 

given data. Update: We will 

be creating our own data. 

Josh 24-Jan 16-Feb Deferred 

Testing 

Testing integration with the 

webpage. Possible 

connection to the ML 

module. 

Josh 1-Mar 8-Mar Deferred 

Trim 

There may be data we do not 

need. May require a rework 

of the tables. 

Josh 9-Mar 15-Mar Deferred 
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Machine Learning           

Research 

What make a good model. 

What libraries exist for us to 

utilize. 

Kyle 2-Feb 25-Feb Complete 

Implement 

Begin writing the code that 

will process the data from the 

DB. Dummy data can be 

used in early versions to see 

how it works. 

Kyle 1-Mar 15-Mar Complete 

Test 
Testing of the data for early 

validation. 
Kyle 28-Mar 4-Apr Complete 

Tweak 
Any changes that need to 

made can be done so here. 
Kyle 5-Apr 13-Apr Complete 

            

            

Data Generator           

Early model 
Generates data based on a 

range of values. 
Josh 15-Feb 22-Feb Complete 

Simulate daily flow 

Simulate the daily "flow" of 

a store. Give estimates for 

item use, shipping times, etc. 

and have the model order 

based on how often an item is 

used. 

Josh, Maggie 22-Feb 2-Mar Complete 

Add weather to model 

Adding weather to better 

simulate natural chaos to 

customer flow. 

Maggie 3-Mar 10-Mar Complete 

Export to Excel 
Adding functionality to 

export to excel for ML use. 
Josh 3-Mar 10-Mar Complete 

Additional Chaos 

More variability that 

holidays or weather does not 

affect. (Shipping delays, 

flash sale, etc.) 

Maggie 10-Mar 17-Mar Deferred 

Graphical User Interface 

Allow the user to input 

certain attributes to influence 

data gen 

Josh 28-Mar 4-Apr Deferred 
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Data Gen & ML Merge           

Pipeline 

Automatic transfer of 

generated data to the 

machine learning model 

Josh and Kyle 15-Apr 20-Apr Complete 

Cleaning 
Cleaning up code and 

comments 
Josh and Kyle 20-Apr 22-Apr Complete 

            

            

Documentation           

Website   Maggie, George, Abigail  Apr-20 23-Apr 
 Future 

works 

Database   Josh, Maggie     Not in use 

ML   Kyle  Apr-20 23-Apr Complete 

Data Generator   Josh  Apr-20 23-Apr Complete 

 

4.6 Deliverables 

a. Design document: contains a listing of each major software component and any diagrams. 

a. Early database design 

b. The evolution of the ML model 

c. Design of the web front 

b. Database schema and initial data. 

a. The schema is for a SQL database. 

b. Initial data is six months of data provided by Walmart for ML model building. 

c. New data is generated by our data generator 

c. Web site code: including front-end and connected back-end/database interface code. 

a. These will include the Python and HTML code for the webpages. 

d. Machine Learning code and analysis. 

a. The language of choice for our ML model will be python. 

e. Data Generator  

a. How to use 

b. What it produces 

c. Limitations and things that would be changed in future iterations 

f. Final report 
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a. A detailed analysis and breakdown of the ML model, how the data generator 

functions, and the web front.  

 

5.0 Key Personnel 

Kyle Orman – Orman is a senior Computer Engineering major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed Programming 

Foundations I and II, Programming Paradigms and Software Engineering which are relevant to the 

software design aspects of this project. His professional experience as a broadcast engineer will be 

useful for creative problem solving and logistics tasks. During this project he will be responsible 

for machine learning research and implementation. 

 

Josh Thornburgh – Thornburgh is a senior Computer Science major in the Computer Science 

and Computer Engineering Department at the University of Arkansas. He has completed the 

following relevant courses: Database Management Systems, Computer Security, Cryptography, 

Information Retrieval, Programming Paradigms, Algorithms, Software Engineering, and 

Programming Foundations I and II. During this project he will be responsible for the creation of 

the data generator.  

 

Abigail Tee – Tee is a senior Computer Science major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. She has completed Programming 

Foundations I and II, Programming Paradigms, Database Management Systems, and Software 

Engineering. During this project she will be responsible for front-end development. 

 

George Romano – Romano is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses such as Programming Foundations I and II, Programming Paradigms, Database 

Management Systems, Software Engineering, Mobile Programming, etc. He will be working on 

front-end development for the project. 

 

Margaret Turner – Turner is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. She has completed relevant 

courses. Relevant courses she has completed are as follows: Database Management Systems, 

Programming Paradigms, Information Retrieval, and Software Engineering. She worked an 

Information Technology internship the summer of 2021 at Texas AirSystems. She will be working 

on the front-end and back-end development.  

 

Dipika Mohapatra – Our industry point of contact. She works for Walmart as a software 

developer.  
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Aneshkumar Tadi and Prasoon Anand –Walmart technical architect and Walmart tech lead in 

Bangalore, respectively. They will assist our project by providing technical support and the data 

we will use to populate our database.  

 

6.0 Facilities and Equipment 

The scope of this project is primarily focused on software design and implementation. We 

will not need facilities and equipment apart from personal devices to research and code with. We 

used Heroku to host our web application with a PostgreSQL database containing our generated 

supply order data. Everyone in the group must have access to a computer with an internet 

connection so they can participate in the research, design, and coding of the project. We will be 

using a database containing computer generated supply chain data and ML model developed in 

python to produce the predictive algorithm that will be utilized to forecast business supply orders 

for Walmart store locations. We will utilize the task management software Trello to assign 

individual tasks and keep to our proposed schedule. No physical location or facility is required to 

achieve the goals of this project.  
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