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Abstract 
Drones are fun to build and control. The CC3D drone controller board is a cheap 

microcontroller board. However, it currently does not support the more modern features such as 

a barometer, GPS (Global Positioning System) functionality, and Wi-Fi support. The project 

holds multiple components that were implemented: the PCB (Printed Circuit Board), a firmware 

program (Betaflight) that aids the drone’s flight capabilities with onboard sensors and other 

control systems logic, and an application that can pull simulated sensor data via HTTP 

(Hypertext Transfer Protocol) server. This project is a collaboration with the Electrical 

Engineering (ELEG) and Computer Science / Computer Engineering (CSCE) departments. The 

Electrical Engineering team designed the hardware components and layout for the controller 

board. The CSCE team were primarily responsible for configuring the firmware and a mobile 

application on the side as a stretch goal that sends/receives information to the drone’s Wi-Fi chip 

(ESP8266) for data if time permits or utilizing HTTP requests to a mock server for simulated 

data if time was a factor. These features will be elaborated further in the Design part of the 

report.   

1.0 Problem 
One of the issues that the Electrical Engineering team faced is deciding on the 

microprocessor to use for the board’s design. The CC3D board currently supports flight 

stabilization, satellite receiver support, and S-Bus support with the outdated STM32F1 processor. 

One of the problems for the CSCE team is to adapt the existing Betaflight open-source firmware 

for drone controllers into our custom boards with the STM32F4 processor. Betaflight is designed 

for primarily pre-made controller boards. While it is possible to configure Betaflight for custom 

pinouts, it is beyond the normal use-case and the official repository lacks documentation on the 

matter. Without the firmware adaptation, the drone would not be able to perform basic flight 

control functions such as hovering and power delivery management.  
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2.0 Objective 
The goal of this project is to create a quadcopter flight controller based upon an existing 

obsolete flight controller model, the “CC3D” with similar or better functionality to commercially 

available flight controllers. The scope of this goal is focused on the flight controller primarily on 

the features, drone behavior, and method of flight control. This flight controller was mounted 

onto the DYS XCITE 320 quadcopter but also should be compatible with almost any quadcopter 

design like most off-the-shelf flight controllers. Because of this, the quadcopter remained 

unchanged as the modifications was focused on the power delivery circuits in the DYS 320 

quadcopter as well as the flight controller PCB. The controller delivers PWM RC control signals 

and output servo control signals to control the quadcopter motors. Betaflight allows the drone to 

support hovering and is configured to accept PPM and S-Bus control signals from a receiver. 

Also, our secondary goals were to include attaching a GPS module and extended functionality to 

be controlled by an app on a device. However, due to time constraints, some of these stretch 

goals were not fully implemented. 

 

3.0 Background 

3.1 Key Concepts 

Analog-to-Digital Converter (ADC): Converts analog signals (real-world signals) to digital (0 

or 1) representations of that signal so that a computer can understand it.  

AnyDesk: A remote desktop application that allows users to access someone’s computer 

remotely as if that user was there operating on the other’s system in-person.  

Betaflight [1]: Betaflight is the firmware that was used as the firmware of our flight controller. 

The focus on flight performance as opposed to other firmware forks made it a good pick for the 

firmware for the project’s flight controller. It also includes a Betaflight configurator GUI that can 

flash and modify the firmware’s functionality on-the-fly.  

Development Board [11]: This term refers to the Olimex STM-P405 board, which is a red 

development board that features the same STM32F405RG that is used in the production board.  

Direct Memory Access (DMA): Direct Memory Access is a feature that Betaflight supports that 

allows peripherals or any other I/O device to directly access the system’s memory without 

calling the CPU to fetch a memory block for it. This can be important for reducing the 

processor’s load, especially during flight. It is good to keep Betaflight’s RTOS under a certain 

load so it will have time to compute critical tasks.  

ESP8266 [4]: A budget Wi-Fi chip that allows microcontrollers to connect itself to a Wi-Fi 

network which allows protocols such as TCP/IP stacks to be able to communicate with it. 

Because of its low price, it allows communication with the quadcopter with ease and 

accessibility. 
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Expo [5]: Expo is a foundation for an app which can implement React Native [17]. To allows 

users to quickly refresh apps and compile them for testing while building itself on iPhone, 

Android, and web-based browsers. 

Firmware: Firmware is a type of computer software that gives information and instructions for 

communicating between the device and hardware. The software is stored in the hardware and is 

interacted with by the device by sending signals most commonly by certain frequencies. 

Firmware is especially common for everyday hardware such as TV remotes, routers, 

refrigerators, and many other daily devices and appliances. 

Inter-Integrated Circuit (I2C) [22]: A synchronous, serial communication interface developed 

Phillips Semiconductor, now named NXP Semiconductor. It requires only 2 wires (Data and 

Clock) to run and allows multiple masters and peripherals. It is not as fast as SPI (see SPI 

below), but it is more flexible as you can easily add more peripherals to the bus since it only 

requires 2 lines.   

Multiwii Serial Protocol [10]: A serial protocol that Betaflight and other Cleanflight derived 

flight controllers use. 

PID Tuning [14]: Tuning the PID means to adjust the coefficients of the P (Proportional) value, 

I (Integral) value, and D (Derivative) value. This allows a control loop that is acting upon 

feedback to give the appropriate response. In the case of our quadcopter, too much or too little of 

these values could cause the drone to wobble when trying to level or too slow to respond 

accordingly. PID tuning is important for configuring the drone to be “smooth” and “responsive” 

during flight. 

PPM Signals [13]: Pulse Position Modulation signals are signals composed of pulses of a fixed 

length in a series to send information between the transmitter and receiver. It is like Pulse Width 

Modulation signals however PPM changes the position of the impulse without variation to the 

amplitude. The final design may or may not have PPM signals integrated in since it is a stretch 

goal. 

Production Board: This term refers to the green flight controller board used for the drone. In 

the report, “flight controller board” and “flight controller” are used interchangeably to refer to 

the green production board. 

PWM Signals [13]: Pulse Width Modulation signals are signals that are transmitted with the 

average length of information between the transmitter and receiver. The width of the pulses 

varies which is why it is pulse width modulation. The amplitude is constant while the positions 

are changed based on the signal. This is the signal that the final design of the controller will use 

if stretch goals of PPM signals are not met. 

React Native [17]: React Native is a simple JavaScript based development foundation that is 

open source which allows users to create simple naïve apps. It allows for components to be 

implemented easily and with its fast refresh, it coordinates well with Expo to create a framework 

for a mobile app. 
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Serial Peripheral Interface (SPI) [22]: A synchronous, serial communication interface 

developed by Motorola. Most of the time, SPI requires 4 wires (Clock, Master Out-Slave In 

(MOSI), Master In-Slave Out (MISO), Chip Select), but sometimes it can be configured with a 

3-wire setup. The biggest advantage to SPI is speed as it does not have a specified maximum 

speed. However, SPI is commonly configured to run at around 10-20 Mbps while I2C’s 

maximum speed is around 3.4 Mbps with “high-speed mode”.  

Serial Wire Debug [18]: Provides microcontrollers a debug port for pin-limited packages. 

STM32Cube: STM32Cube is an IDE (Integrated Development Environment) that allows 

developers to program STM32 processors, which is the processor that is used on the flight 

controller boards. 

System: The system refers to the circuitry that makes up the quadcopter controller. In the design, 

the system features will refer to the features of the final design overall. 

Timer: A timer is used for counting operations to give the hardware some sense of timing. It is 

used in the Betaflight configuration process. 

Unified Target: A unified target, in Betaflight terms, is a flexible configuration file that the 

Betaflight Configurator accepts and describes the flight controller’s behavior. 

Universal Asynchronous Receiver Transmitter [22]: An asynchronous, serial communication 

interface and is one of the earliest communication protocols developed. Since it is an 

asynchronous protocol, it does not need a wire for the clock. It only requires 2 lines: transmit and 

receive. USART (Universal Synchronous and Asynchronous Receiver Transmitter) adds optional 

synchronous operation to the UART interface. 

3.2 Related Work 

The quadcopter is based off the original CC3D board which ran from OpenPilot 

firmware. This project uses Betaflight which is derived from Cleanflight and it significantly 

improves on the flight performance compared to the old OpenPilot. As discussed in the Problem 

section, Betaflight lacks documentation for creating custom unified target configurations. After 

configuring the custom flight controller, more documentation has been made in the official 

BetaFlight repository via pull request [16] so others in the future could get clearer instructions on 

how to configure a custom board like what was done here.  

Furthermore, the CC3D mentioned in [3] has additional features that the project 

improved from the original design. The system has a IMU (Inertial Measurement Unit) sensor as 

well as barometer and magnetometer. The flight controller also included a RDQ Mini 8 GPS 

module, allowing Betaflight to receive GPS coordinates for navigation purposes. The GPS 

module always allows tracking of the controller location, which can help with understanding the 

altitude and elevation of the quadcopter. These give the quadcopter more advanced flight 

functionality. 
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Aside from the quadcopter, related work on the app side focuses on an MSP protocol app. 

There is also a Cordova-based app [9] to control the drone and its design shows a basic UI which 

connects to a TCP network through a URL and controls the whole drone via two radars 

controlled by numbers on the side. While this is similar to what the project at hand, the 

quadcopter’s app is envisioned to be a joystick on the sides. Still, it serves as a possible 

inspiration however, the app created will not be utilizing Cordova but instead Expo. 

4.0 Design 

4.1 Requirements and Use Cases and Design Goals  

4.1.1 Requirements 

 For this project, there were a few important functional requirements for the quadcopter 

flight controller. The controller is a fully functional controller that operates a quadcopter drone 

using Betaflight firmware. The controller decodes remote control Pulse-Width Modulation 

signals to control the drone during flight. The drone must also output a minimum of 4 motor 

control signals that are, each, sent to the respective motor’s Electronic Speed Controller (ESC) 

unit. The updated controller has hardware support for communication protocols such as Wi-Fi 

and GPS. When the drone is hovering (maintaining a near-constant altitude), no other control 

signals such as throttle are sent from a receiver source using a barometric pressure sensor 

(BMP280). The drone also has a mechanism for battery protection to prevent permanent damage 

to the battery due to weather or any external phenomena.  

Alongside the functional requirements, there are some non-functional requirements as 

well. The drone should include LEDs and audio output devices to aid the user while operating 

the drone by indicating location, if crashed, fallen, lost, low battery, and other things. Features 

implemented past this point would exceed the foundational scope of this project. Another feature 

that we were looking into that was not a functional requirement is an external application to 

control the drone with a smartphone device instead of an RC receiver. This application would 

allow the pilot to view sensor data such as altitude and accelerometer/gyroscope data, and battery 

life.  

4.1.2 Use Cases 

In the UML Use Case Diagram, the diagram shows three “actors” (the pilot with any kind 

of compatible receiver, the Betaflight firmware, and the power delivery circuit) interacting with 

the “system” or the drone in this case. The pilot, either by means of RC controller or through Wi-

Fi mobile app, controls the drone’s movements such as hovering and steering. The pilot through 

the receiver, sends control signals for throttle (sets how fast the motors will spin to gain altitude 

or stall to lower altitude), roll (controls the drone’s longitudinal axis), pitch (controls the drone’s 

traversal axis), and yaw (controls the drone’s vertical axis). Alongside the pilot as the main user, 

a battery and the power distribution/monitoring circuit built into the controller delivers power 

and protects the controller against any voltage errors. The Betaflight firmware assists the pilot in 

flying the drone by using the onboard peripherals.  
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4.1.3 Design Goals 

 The goal of this project is to create a flight controller board that supports more modern 

features than the outdated CC3D controller such as simultaneous S-Bus and PPM support for 

more flexibility, GPS support, Wi-Fi support, status alerts, and flight stabilization. The end goal 

of this flight controller is to have it control a quadcopter drone in a DYS Xcite 320 chassis, 

allowing it to hover and do other basic maneuvers. Some stretch goals have been established 

such as configuring LED strip and beeper support and creating a mobile application to control 

the drone through Wi-Fi.  

 

 

 

 

 

 

 

 

Figure 1: UML Use Case Diagram 
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4.2 High Level Architecture 

 There were four stages to the Quadcopter Drone Controller project. All four of those 

stages are discussed below. 

4.2.1 PCB Design 

The first phase of the project’s implementation is to design the flight controller PCB 

(Printed Circuit Board). Below are two figures: the connection schematic for the entire “drone 

system” (Fig. 2) and the microcontroller schematic (Fig. 3). The processor chosen for our 

microcontroller is the STM32F405RG [19], which is a high-performance Arm® Cortex®-M4 

based processor that can operate at a frequency up to 168 MHz. It can also have up to 1 MB of 

flash memory and up to 192 KB of SRAM (Static Random Access Memory). Its low cost, 

extensive I/O capabilities, and debug interfaces made a good choice for our flight controller 

board. For our drone, a USB circuit, GPS module, Wi-Fi module, an S.Bus connection, and 

power monitoring circuit for the drone’s motors were added as external connections.  

Figure 2: Component Connections Schematic 
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 Next was choosing the peripherals. Most flight controller boards operate with 

accelerometers and gyroscopes to assist with flight stabilization. The MPU-6050 [8] is a low-cost 

IMU that includes a gyroscope and accelerometer on the same package, making it an ideal 

candidate for our gyro and accelerometer peripheral. The MPU is connected to the 

STM32F405’s I2C clock and data lines. Since there were not enough pins to connect a second 

pair of I2C data and clock lines for the magnetometer, the IMU does fortunately support auxiliary 

I2C. This allows the IMU to act as its own I2C master to become a 9-axis (gyroscope + 

accelerometer + magnetometer) without CPU intervention. Although this does limit the CPU’s 

ability to monitor that transaction and make it more difficult to debug that functionality, it does 

free up some pins for our controller that could be used for GPIO and other things. The 

magnetometer calibrates the IMU to orient itself according to the Earth’s magnetic field.  

 In addition, the board includes a barometer, the BMP280 [2]. The BMP280 is mainly 

used for mobile applications but its low power consumption and small size make it great for 

drone usage as well. Running out of space for another I2C pair, the barometer had to be 

connected through SPI instead of I2C. There were some issues integrating the barometer into the 

board, which will be discussed in the Peripheral Integration subsection. The last primary 

peripheral that had to be soldered on the board was the LIS2MDL magnetometer, which is an 

ultra-low power, 3-axis magnetometer [7]. 

 For the system clock, the OSC-X322516MLB4SI, a very low-cost crystal oscillator, was 

added to clock the system at 16MHz. Other traces were made to the PCB to accommodate for 

external connections such as connecting a battery to an ADC (Analog-to-Digital), connecting an 

Figure 3: Microcontroller Unit Schematic 
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ESP-8266 Wi-Fi chip to a USART, connecting a GPS to another USART, connecting a reset 

switch to the BOOT0 pin to reset the processor when pressed, and connecting the motors to 

PWM output.  

 The main challenge for the PCB design was getting ordered parts in a timely manner. 

ELEG team incrementally soldered each module on the production board while CSCE tested the 

peripherals to ensure they could be programmed and showed expected behavior. Another 

challenge was correcting any mistakes that were encountered during the peripheral testing 

process. 

4.2.2 Peripheral Integration  

While ELEG team was incrementally adding peripherals and other headers to the flight 

controller board, CSCE team was tasked with testing the functionality of the peripherals using 

STM32Cube IDE, which is a development tool that allows the STM32F405 to be programmed in 

C. For much of February, the production board was yet to arrive or had any parts to test yet. So, 

the teams ordered a development board, which is the Olimex STM32-P405 (Fig. 4) [11]. It 

features the same processor. The teams also ordered a ST-Link USB Debugger. This provides the 

STM32 processor an interface to be programmed by a computer through Serial Wire Debugging 

(SWD). Many STM32 microcontrollers do not feature an on-board debugging interface.  

 

After getting the production boards from order, CSCE team tested the board’s USB Serial 

interface to read output from the board. To set this up, a virtual COM port driver had to be 

installed into a Windows machine and there are libraries in the STM32Cube IDE that supports 

USB serial communication, which is the USB_CDC library.  

 

  

Figure 4: Image of Olimex STM32-P405 Development Board 

Figure 5: MISO and MOSI Switch Highlighted in Red Circle 
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One of the first peripherals to be tested was the barometer. During that period of testing, a 

major PCB design flaw was detected. One of the mistakes made in the original PCB design was 

the processor’s SDI line, which its input (MISO), was connected to the barometer’s SDI line. 

Also, the processor’s SDO line was connected to the peripheral’s SDO. The correct connection is 

supposed to be: STM32_SDO → BARO_SDI & STM32_SDI  BARO_SDO. Realizing this, 

adjustments had to be made to the board. Using tiny, enameled wires, traces were cut to bridge 

the correct SDO and SDI lines as shown in Fig. 5. After the fix, the barometer could output 

temperature and atmospheric pressure data using STM_HAL functions for SPI communication. 

Altitude could then be derived from those variables as shown in the sample output (Fig. 6). 

Datasheets that include the derived algorithms used and code for the BMP280 test driver are 

provided in the GitHub repositories [21]. 

Next, the CSCE team tested the MPU-6050. Fortunately, the IMU did not reveal any 

further problems with the PCB that were major. At worst, the IMU had to be resoldered on some 

of the boards since some of the pads were not making good contact. After creating another test 

driver for the IMU using STM_HAL functions for I2C communication, the IMU could output 

gyroscope and accelerometer data as shown in Fig. 7. Datasheets and code for the MPU-6050 

test driver are provided in the GitHub repositories [21]. 

 

  

  

After the IMU, the last peripheral that was tested was the LIS2MDL magnetometer. The 

magnetometer was a little trickier to test, since unlike the other peripherals on the board, it is not 

directly connected to the processor. According to the MPU6050 datasheet, the IMU can be 

configured to be a separate I2C master without help of the CPU. This frees up more pins that 

could be used for other things for our controller, but it makes it hard to debug this transaction as 

the processor cannot see it. To set the IMU to be its own master, the I2C_BYPASS_EN bit in 

register address 0x37 (INT_PIN_CFG) must be reset, which disallows the processor of accessing 

the auxiliary I2C bus between the IMU and magnetometer. Then, the I2C_MST_EN bit in 

register address 0x6A (USER_CTRL) must be set, which allows the MPU-6050 to act as master 

for the magnetometer. Doing this will initiate a separate master-slave transaction between the 

IMU and magnetometer, which produces the similar output shown in Fig. 7, but the board 

Figure 6: Sample Barometer Output 

Figure 7: Sample IMU Output 
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showed to be more responsive to orientation changes. Datasheets and code for the IMU-Mag test 

driver are provided in the GitHub repositories [21]. 

4.2.3 Betaflight Configuration  

 After testing the last peripheral to be soldered on the board, CSCE and ELEG teams 

moved into stage 3 of the project, which was to flash Betaflight and configure it to our custom 

pinout. While the magnetometer was being tested, research was done to figure out how to flash 

the base Betaflight firmware onto the controller. At first, it was assumed the CSCE team would 

have to change the firmware that is mainly coded in C and compile a hex file for every 

configuration change. Although this would be the more interesting approach, unfortunately, the 

teams fell behind on schedule due to waiting nearly a month for equipment to arrive on order and 

a period of severe snow weather holding up further development on the production boards. Also, 

this approach would be proven to be even more unfeasible for the teams since development 

proved to be rather difficult without having a production board on hand. Only three boards were 

created, which made it difficult for those who were not one of the three who had a board to do 

much development. Remote Desktop tools such as AnyDesk were used to try to combat this 

issue, but they were ineffective due to technical/networking issues. 

 Fortunately, Betaflight has a configurator GUI tool (Fig. 9) that made the configuration 

process a little easier. CSCE team still had to figure out how to create a unified target for our 

custom board to create a fully functional flight controller by using the included command line 

interface. To flash firmware, generic USB firmware was installed into the board so Betaflight 

firmware could be flashed with the board in DFU (Device Firmware Upgrade) mode.  

  

 

 

 

 

After the firmware was flashed and the controller appeared as a COM port in the 

configurator, CSCE team had to then go into the command line of the configurator to describe 

pinouts and other behavior to have Betaflight load the correct drivers for the hardware. In the 

command line, there were many commands such as resource, set, timer, and dma to configure 

the hardware. The “resource” command essentially designates the pins of the processor. It tells 

Betaflight where the chip select pin for the barometer is, where the I2C clock and data lines are, 

where the motor outputs are, etc. The “set” command sets different variables that describe the 

hardware such as the i2c_address for the IMU device, the IMU hardware, the barometer 

hardware, lowpass filters, gyroscope alignment, receiver modes, etc.  

 One of the biggest challenges for the teams was setting custom configurations in 

Betaflight. Although Betaflight does have some flexibility to work with different combinations 

Figure 8: Betaflight Configurator Setup Menu 
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of hardware, setting custom configurations for custom board hardware like this is beyond the 

normal use-case, according to one of the Betaflight developers. The normal use case was loading 

pre-configured unified targets as Betaflight includes many different targets. The official 

Betaflight repository did not have sufficient documentation for configuring custom hardware 

after flashing generic STM32F405 firmware. In fact, there was some important documentation 

that was missing. Notably, the user must configure timers and DMA (Direct Memory Access) 

channels for some features.   

 The timers give the processor some sense of timing for operations such as motor output, 

I2C operations, and the Analog-to-Digital converters for the battery indicator. Direct Memory 

Access can also be important depending on the hardware setup. Direct Memory Access allows 

peripherals to, as the name implies, directly access memory instead of accessing by calling to the 

CPU to get the data from memory. This can be important for reducing load off the scheduler in 

Betaflight’s RTOS. There could be many things trying to interact with the CPU at a time such as 

the IMU, the barometer, a GPS, video feed data, etc. While the drone is in flight, it is important 

to minimize the amount of load onto the CPU as much as possible to reduce the risk of 

Betaflight’s scheduler not being able to handle a critical task on time. After this was discovered, 

a pull request was made and is merged to the official Betaflight repository to include this 

documentation. 

 The next peripheral to configure was the GPS module, a RDQ Mini 8. This is a GPS 

module that works out of the box. Not much had to be done to the configuration to set the GPS to 

work. All that was done was setting the USART3 port to a GPS sensor input and setting the GPS 

protocol to UBLOX, which is a standard GPS protocol. After that, Betaflight configuration was 

mostly done. ELEG team scheduled for a certified drone pilot to test our drone and it flew 

successfully.  

The last thing that was configured on Betaflight was the PID (Proportional, Integral, 

Derivative) controller in Betaflight. In the first test flight of the drone, it was observed that the 

drone tended to overcompensate to feedback. The drone could hardly fly and could not land due 

to the hypersensitivity to the external feedback. This was due to not tuning the PID controller in 

Betaflight. For the next test, additional configurations were made to tune the P value, D value, 

and RC rate values. These settings, in addition to enabling a “Horizon” mode, made the drone fly 

much smoother and easier. The final drone is shown in Fig. 10 below. Any future improvements 

or tuning that could be done to the drone will be discussed in the Future Work subsection.  

 

Figure 9: Final Quadcopter Photo 
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4.2.4 App Design 

 For the app design, the app documentation is provided along with the TSDoc comments 

implemented into the code. But for the baseline, the app started as a testing ground for HTTP 

requests. It was created using expo and react native as a naïve basic app. A mock drone server 

was created first which held the POST and GET methods for the mock drone to communicate 

with the app and vice versa. The app would utilize a useEffect hook to obtain information every 

few seconds within an interval. The fetching was done asynchronously from an endpoint and the 

information sent would be simulated such as the battery percentage of the drone, the acceleration 

and heading of the drone, the gyroscope’s current axis, the altitude of the drone, the temperature 

and pressure which will help determine the absolute altitude of the drone, and other sorts of 

information necessary. Initializing these to a reasonable number allows the app to be used as a 

proof of concept. Through this information, the information can be sent back after the joystick 

was implemented. 

Before the joystick’s debut, the app was designed with a map and the foundation was 

changed using clever hooks that contained useState. The map allowed the usage of location data 

which allowed the drone to communicate its place with the phone. Initializing it from earlier, the 

drone would be able to be planted in 3D space with the current altitude, heading, yaw, throttle, 

etc. Another issue was the map itself would sometimes break so an override was created to 

ignore errors and test for issues when necessary. The app’s imports of these libraries did not slow 

down the app by very much however when it was introduced that the joystick’s compatibility 

would slow down the app by a large margin, the joystick would have to be done from scratch. 

The joystick consisted of creating an inner and outer circle. However, the inner circle 

cannot hold in its own container unless a function prevented it from doing so. This caused a 

function called boundsLimit to be the key feature in holding the joystick together. Implementing 

a panResponder, the joystick would be in motion. The joystick had minor setbacks which were 

fully documented in the documentation but empty testing grounds were created to circumvent 

this situation. The joysticks were needed to be differentiated for their different purposes and 

using this information, it was sent back to the fly screen to be sent directly to the server. Because 

the server is the main computation component, if the ESP8266 was implemented, it would have 

been necessary for it to hold the computation as well. The mock server computed based on the 

joystick’s location and allowed the drone to fully move and change the coordinates which would 

be reflected on the map. 

The last part of the app would be to create an app with TCP protocol similar to the 

Cordova-based app for TCP. With expo, it would be difficult because of time-constraints, so it 

would be something to be pushed to future work. The app is shown in Fig. 11 below. 

 
Figure 10: Final App Photo 
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4.2.5 Future Work  

Due to time constraints, there were a few things that could have been done if the teams 

had extra time. One of the bugs that were encountered for the board design is whenever the board 

loses power, the board also loses Betaflight and the peripherals. When the board receives power 

again, Betaflight isn’t re-enabled unless the reset button is held. However, still, most peripherals 

won’t be enabled again as they should unless the board is connected to a computer again to set 

up Betaflight. The configuration is saved in the board, but not everything turns on as it should 

unless Betaflight is reset. It doesn’t impact the core functionality of the board just as so long the 

board is receiving power. It’s just a major inconvenience to connect and disconnect the board 

repeatedly every power cycle. This could be a flaw in the PCB design or a timer initialization 

problem in Betaflight. The board is also currently missing support for an LED strip and a beeper 

to signal the pilot on critical statuses such as low battery, GPS lost, and other failsafe protocols. 

This can simply be implemented with more commands in the Betaflight Configurator.  

A major feature that the team intended on implementing is an app to send control signals 

(Throttle, Roll, Pitch, and Yaw). The app was to also be able to receive sensor values from the 

barometer, IMU, and GPS modules. There is a Cordova-based app that is like how we envisioned 

the app to be. It connects to the ESP8266 via TCP connection, and it controls the flight controller 

as a Wi-Fi receiver using MSP (Multiwii Serial Protocol) commands. While it does pull CPU 

Usage and AUX (Auxiliary) channel data, it currently does not receive data sensors data. This 

proves that the implementation is possible. There just was not enough time to reverse-engineer 

and create a new app from the ground up. 

Another thing that could be done is to verify the sensor fusion between the IMU and 

magnetometer. In our schematic, the IMU and magnetometer are connected between their own 

I2C interaction. Betaflight can be coded to enable the IMU to be a I2C master without the CPU’s 

help. The point of the magnetometer is to provide the IMU calibration data without having to set 

it in Betaflight. Using oscilloscopes show that there’s data being passed in the auxiliary SDA 

line, but in Betaflight’s perspective, there is no way in verifying if the IMU interfacing with the 

magnetometer.  
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4.3 Risks 
Risk Risk Reduction 

Board Failure This design is focused on the two boards: First 

the flight controller board, then the power 

monitoring board. In the case of a complete 

failure of the flight controller board, the 

motors will lose power and the drone will fall 

out of the air. If the board were to have a 

partial failure of the flight controller board, 

systems of the drone could be shut down 

reducing the chance of injury to by standers. 

In the case power monitoring board failure, 

there is the chance that the lithium ion (or 

lithium polymer) battery could be ruined. To 

prevent this from happening, we will be 

incorporating a sensor to monitor the level of 

the battery to avoid under-volting. Using the 

battery monitor and Betaflight’s failsafe 

configuration tools, the user will be notified 

that the battery is running low, giving them a 

chance to land the drone before it loses power. 

Misuse If not implemented properly, the design of the 

controller can be misused. The controller can 

be attached to almost any quadcopter with any 

intentions. The end user must have a warning 

about safety and misuse of the device, as well 

as the laws surrounding it. 

Safety Issues Without regulation, the quadcopter can fly up 

to 400 ft into the air, where it has the 

possibility to interfere with low flying air 

traffic. This must be monitored to fit within 

drone flying regulations set by the 

government. Also, the end user must be 

warned about the risks of flying near 

power/utility lines. The quadcopter must also 

be used by a licensed flyer. 

 

Environmental Issues Since the finished quadcopter will use a 

lithium polymer battery, there is a concern 

about proper disposal of such battery. Proper 

disposal must be advised on final product. A 

licensed flyer can also help check for 

environmental concerns of the drone. 

Destroyed Board In case if one of the controller boards were 

destroyed for any reason, 3 duplicate boards 

were developed.  
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CPU Overload Direct Memory Access channels were 

configured in Betaflight to prevent the CPU 

from being overloaded with tasks. This is 

especially important during flight so 

Betaflight will always have enough time to 

handle critical tasks. 

 

4.4 Tasks 

Understanding: 

• Base flight controller design 

• STM32Cube IDE 

• BMP280 Functionality 

• MPU6050 Functionality 

• LIS2 Functionality 

• Betaflight Configuration 

• Timer & DMA Channel Setup (Betaflight) 

• Receiver Signal (PPM or PWM or S.Bus) 

• React-Native Framework for App 

• TCP/MSP Back-end 

• Drone Test Flight 

Design: 

• Create schematic 

• Final PCB layout 

• Betaflight custom unified target configuration 

• Design react-native front-end 

• Design HTTP back-end for app 

Implementation: 

• Print new PCB 

• Program board 
o BMP280 driver 
o MPU6050 driver 
o MPU/LIS2 auxiliary I2C driver 

• Hardware 
o Solder flight controller 
o Battery protection circuit 
o Support LED and sound indicators 

• Betaflight (Software) 
o Flash base firmware through DFU 
o Configure primary peripherals 
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o Configure motors 
o Configure receiver 

Testing: 

• Peripheral drivers (BMP, MPU, LIS2) 

• Base Betaflight firmware (generic STM32F405 hex file) 

• Drone flight (after Betaflight configuration) 

• HTTP mock server 

• App communication with mock server 

Documentation: 

• Pin layout 

• MCU and Peripheral schematics 

• Betaflight Configurator (unified target) 

• USB Flashing 

• Peripheral Testing 

• All required FAA warnings 

• App Documentation 
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4.5 Schedule 

 

 

 

 

 

 

 

 

 

 

 

Tasks Dates 

1. Project Planning 9/15/20 -12/1/20 

2. Design: Schematics, Layouts, Test Plan 10/1/20 - 12/1/20 

3. Hardware Implementation: PCB Layout, Print Board, 

Program Board, Control Signals, Hardware Soldering, 

Battery Protection Circuit 
10/15/20 - 1/20/21 

4. Flight Controller Peripheral Testing: BMP280, 

MPU6050, LIS2 
2/15/21 - 3/21/21 

5. Betaflight Configuration (Unified Target Creation): 

Peripherals, Motors, Receiver 
3/21/21 - 4/16/21 

6. ESP8266 Configuration: Flash esp-link firmware into 

Wi-Fi module and Research TCP/MSP Interface for 

App 
3/21/21 - 4/23/21 

7. App Development and Integration: Create HTTP Mock 

Setup & Reverse-Engineer MSP/TCP Controller 
4/1/21 - 4/22/21 

8. Finishing Touches on Drone: Fix Minor Problems and 

Test Flight 
4/15/21 - 4/22/21 

9. Final Deliverables: Poster, Final Report, Final 

Presentation, and Website 
4/24/21 - 4/29/21 
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4.6 Deliverables 

The deliverables for this project are as follows: 

• A System Block Diagram & Specifications: These contain both the hardware and 

software components and the PCB layout. 

• Flight controller and Peripheral Datasheets: These contains the architecture of the flight 

controller.  

• Project Website [15]: All related deliverables will be contained on the website such as the 

Poster, Presentation Slides, Final Report, and the GitHub repositories with the relevant 

source files, config files, and documentation. 

• Hardware: The finished flight controller and accompanying power board and other 

hardware used for the board will be delivered back to the ELEG department. 

• GitHub organization [21]: This contains all the following repositories: 
o Betaflight: A forked repository from the official Betaflight repository to make any 

needed changes to the codebase. 
o DroneCTRL: Contains the source code for the mobile application using the React 

Native framework in TypeScript. 
o KnowledgeBase: Contains all documentation relating to the project such as 

configuring Betaflight, firmware flashing through DFU (Device Firmware 

Update), ESP8266 development, STM32Cube debugging, and peripheral 

datasheets. 
o STM32F4_PerpheralTest: Contains the source code for the drivers to verify the 

peripherals on the flight controller in an isolated manner prior to flashing 

BetaFlight firmware, using STM32Cube IDE.  
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5.0 Key Personnel 

Zachary Heil - Heil is a senior Computer Engineering and Electrical Engineering double major. 

He was responsible for coordinating and leading both teams. On the ELEG team, he was 

responsible for soldering. On the CSCE team, he was responsible for app development. 

Lily Phu – Phu is a senior Computer Science major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. She has completed software engineering 

and is experienced in many programming languages. She was responsible for app development. 

Stephanie Phillips – Phillips is a senior Computer Engineering major at the University of 

Arkansas. She has completed software engineering, digital design, computer organization, 

embedded systems and is experienced with C, Verilog, VDHL, and Python. She was responsible 

for the backend development of the ESP-8266. 

Spencer Ward – Ward is an undergraduate senior computer engineer at the University of 

Arkansas. He has experience with VHDL and Verilog, as well as C and C++. Currently in 

training for Dr. Di, he is researching asynchronous design technologies. He was responsible for 

the backend development of the ESP-8266. 

Dishoungh White II – White is a senior Computer Engineering major in the Computer Science 

and Computer Engineering Department at the University of Arkansas. He has completed Digital 

Design, Software Engineering, and Embedded Systems. He was responsible for testing primary 

peripherals on STM32Cube and configuring the Betaflight firmware on the drone controller. 

Andy McCoy – McCoy is a senior Electrical Engineering major in the Engineering Department 

at the University of Arkansas. He was responsible for hardware testing. 

Joel Parker – Parker is a senior Electrical Engineering major in the Engineering Department at 

the University of Arkansas. He was responsible for lab setup. 

Christ Somophounout – Somophounout is a senior Electrical Engineering major in the 

Engineering Department at the University of Arkansas. He was responsible for log book & data.  

Skyler Hudson – Hudson is a certified drone pilot and helped test the drone for flight. 

Alex Cutsinger (Champion) – Cutsinger is a Software and Electrical Engineer for L3 

Technologies, who graduated from the University of Arkansas with a Bachelor’s Degree in 

Electrical Engineering. Cutsinger’s interest are robotics and mathematics. 
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6.0 Facilities and Equipment 

• Electrical Engineering Senior Design Lab (Facility) - The ELEG lab has a lot of 

important equipment and tools such as soldering irons, oscilloscopes, and other kits to 

help debug and create/modify our board. 

• Olimex STM-P405 Development Board (Equipment) - The Olimex (red) board is a pre-

made development board that we used to test the barometer and the STM32F405 

processor in an integrated development environment (STM32Cube). 

• ESP-8266 Wi-Fi Chip (Equipment) - The Wi-Fi chip was used as a bridge between our 

flight controller board and our proposed app.  

• DYS Xcite 320 Drone Chassis (Equipment) - The DYS chassis is the body of our drone. 

• Betaflight Configurator (Equipment) - The Betaflight Configurator is the GUI application 

used to flash generic STM32F405 firmware and to configure the hardware on our board 

to be used for flight. 
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