
Quadcopter Drone Controller

1 | P a g e

University of Arkansas – CSCE Department

Capstone II – Final Report – Spring 2021

Quadcopter Drone Controller

Zachary Heil, Lily Phu, Stephanie Phillips, Spencer Ward, Andy McCoy, Joel Parker,

Christ Somophounout, Dishoungh White II

Abstract
Drones are fun to build and control. The CC3D drone controller board is a cheap

microcontroller board. However, it currently does not support the more modern features such as

a barometer, GPS (Global Positioning System) functionality, and Wi-Fi support. The project

holds multiple components that were implemented: the PCB (Printed Circuit Board), a firmware

program (Betaflight) that aids the drone’s flight capabilities with onboard sensors and other

control systems logic, and an application that can pull simulated sensor data via HTTP

(Hypertext Transfer Protocol) server. This project is a collaboration with the Electrical

Engineering (ELEG) and Computer Science / Computer Engineering (CSCE) departments. The

Electrical Engineering team designed the hardware components and layout for the controller

board. The CSCE team were primarily responsible for configuring the firmware and a mobile

application on the side as a stretch goal that sends/receives information to the drone’s Wi-Fi chip

(ESP8266) for data if time permits or utilizing HTTP requests to a mock server for simulated

data if time was a factor. These features will be elaborated further in the Design part of the

report.

1.0 Problem
One of the issues that the Electrical Engineering team faced is deciding on the

microprocessor to use for the board’s design. The CC3D board currently supports flight

stabilization, satellite receiver support, and S-Bus support with the outdated STM32F1 processor.

One of the problems for the CSCE team is to adapt the existing Betaflight open-source firmware

for drone controllers into our custom boards with the STM32F4 processor. Betaflight is designed

for primarily pre-made controller boards. While it is possible to configure Betaflight for custom

pinouts, it is beyond the normal use-case and the official repository lacks documentation on the

matter. Without the firmware adaptation, the drone would not be able to perform basic flight

control functions such as hovering and power delivery management.

Quadcopter Drone Controller

2 | P a g e

2.0 Objective
The goal of this project is to create a quadcopter flight controller based upon an existing

obsolete flight controller model, the “CC3D” with similar or better functionality to commercially

available flight controllers. The scope of this goal is focused on the flight controller primarily on

the features, drone behavior, and method of flight control. This flight controller was mounted

onto the DYS XCITE 320 quadcopter but also should be compatible with almost any quadcopter

design like most off-the-shelf flight controllers. Because of this, the quadcopter remained

unchanged as the modifications was focused on the power delivery circuits in the DYS 320

quadcopter as well as the flight controller PCB. The controller delivers PWM RC control signals

and output servo control signals to control the quadcopter motors. Betaflight allows the drone to

support hovering and is configured to accept PPM and S-Bus control signals from a receiver.

Also, our secondary goals were to include attaching a GPS module and extended functionality to

be controlled by an app on a device. However, due to time constraints, some of these stretch

goals were not fully implemented.

3.0 Background

3.1 Key Concepts

Analog-to-Digital Converter (ADC): Converts analog signals (real-world signals) to digital (0

or 1) representations of that signal so that a computer can understand it.

AnyDesk: A remote desktop application that allows users to access someone’s computer

remotely as if that user was there operating on the other’s system in-person.

Betaflight [1]: Betaflight is the firmware that was used as the firmware of our flight controller.

The focus on flight performance as opposed to other firmware forks made it a good pick for the

firmware for the project’s flight controller. It also includes a Betaflight configurator GUI that can

flash and modify the firmware’s functionality on-the-fly.

Development Board [11]: This term refers to the Olimex STM-P405 board, which is a red

development board that features the same STM32F405RG that is used in the production board.

Direct Memory Access (DMA): Direct Memory Access is a feature that Betaflight supports that

allows peripherals or any other I/O device to directly access the system’s memory without

calling the CPU to fetch a memory block for it. This can be important for reducing the

processor’s load, especially during flight. It is good to keep Betaflight’s RTOS under a certain

load so it will have time to compute critical tasks.

ESP8266 [4]: A budget Wi-Fi chip that allows microcontrollers to connect itself to a Wi-Fi

network which allows protocols such as TCP/IP stacks to be able to communicate with it.

Because of its low price, it allows communication with the quadcopter with ease and

accessibility.

Quadcopter Drone Controller

3 | P a g e

Expo [5]: Expo is a foundation for an app which can implement React Native [17]. To allows

users to quickly refresh apps and compile them for testing while building itself on iPhone,

Android, and web-based browsers.

Firmware: Firmware is a type of computer software that gives information and instructions for

communicating between the device and hardware. The software is stored in the hardware and is

interacted with by the device by sending signals most commonly by certain frequencies.

Firmware is especially common for everyday hardware such as TV remotes, routers,

refrigerators, and many other daily devices and appliances.

Inter-Integrated Circuit (I2C) [22]: A synchronous, serial communication interface developed

Phillips Semiconductor, now named NXP Semiconductor. It requires only 2 wires (Data and

Clock) to run and allows multiple masters and peripherals. It is not as fast as SPI (see SPI

below), but it is more flexible as you can easily add more peripherals to the bus since it only

requires 2 lines.

Multiwii Serial Protocol [10]: A serial protocol that Betaflight and other Cleanflight derived

flight controllers use.

PID Tuning [14]: Tuning the PID means to adjust the coefficients of the P (Proportional) value,

I (Integral) value, and D (Derivative) value. This allows a control loop that is acting upon

feedback to give the appropriate response. In the case of our quadcopter, too much or too little of

these values could cause the drone to wobble when trying to level or too slow to respond

accordingly. PID tuning is important for configuring the drone to be “smooth” and “responsive”

during flight.

PPM Signals [13]: Pulse Position Modulation signals are signals composed of pulses of a fixed

length in a series to send information between the transmitter and receiver. It is like Pulse Width

Modulation signals however PPM changes the position of the impulse without variation to the

amplitude. The final design may or may not have PPM signals integrated in since it is a stretch

goal.

Production Board: This term refers to the green flight controller board used for the drone. In

the report, “flight controller board” and “flight controller” are used interchangeably to refer to

the green production board.

PWM Signals [13]: Pulse Width Modulation signals are signals that are transmitted with the

average length of information between the transmitter and receiver. The width of the pulses

varies which is why it is pulse width modulation. The amplitude is constant while the positions

are changed based on the signal. This is the signal that the final design of the controller will use

if stretch goals of PPM signals are not met.

React Native [17]: React Native is a simple JavaScript based development foundation that is

open source which allows users to create simple naïve apps. It allows for components to be

implemented easily and with its fast refresh, it coordinates well with Expo to create a framework

for a mobile app.

Quadcopter Drone Controller

4 | P a g e

Serial Peripheral Interface (SPI) [22]: A synchronous, serial communication interface

developed by Motorola. Most of the time, SPI requires 4 wires (Clock, Master Out-Slave In

(MOSI), Master In-Slave Out (MISO), Chip Select), but sometimes it can be configured with a

3-wire setup. The biggest advantage to SPI is speed as it does not have a specified maximum

speed. However, SPI is commonly configured to run at around 10-20 Mbps while I2C’s

maximum speed is around 3.4 Mbps with “high-speed mode”.

Serial Wire Debug [18]: Provides microcontrollers a debug port for pin-limited packages.

STM32Cube: STM32Cube is an IDE (Integrated Development Environment) that allows

developers to program STM32 processors, which is the processor that is used on the flight

controller boards.

System: The system refers to the circuitry that makes up the quadcopter controller. In the design,

the system features will refer to the features of the final design overall.

Timer: A timer is used for counting operations to give the hardware some sense of timing. It is

used in the Betaflight configuration process.

Unified Target: A unified target, in Betaflight terms, is a flexible configuration file that the

Betaflight Configurator accepts and describes the flight controller’s behavior.

Universal Asynchronous Receiver Transmitter [22]: An asynchronous, serial communication

interface and is one of the earliest communication protocols developed. Since it is an

asynchronous protocol, it does not need a wire for the clock. It only requires 2 lines: transmit and

receive. USART (Universal Synchronous and Asynchronous Receiver Transmitter) adds optional

synchronous operation to the UART interface.

3.2 Related Work

The quadcopter is based off the original CC3D board which ran from OpenPilot

firmware. This project uses Betaflight which is derived from Cleanflight and it significantly

improves on the flight performance compared to the old OpenPilot. As discussed in the Problem

section, Betaflight lacks documentation for creating custom unified target configurations. After

configuring the custom flight controller, more documentation has been made in the official

BetaFlight repository via pull request [16] so others in the future could get clearer instructions on

how to configure a custom board like what was done here.

Furthermore, the CC3D mentioned in [3] has additional features that the project

improved from the original design. The system has a IMU (Inertial Measurement Unit) sensor as

well as barometer and magnetometer. The flight controller also included a RDQ Mini 8 GPS

module, allowing Betaflight to receive GPS coordinates for navigation purposes. The GPS

module always allows tracking of the controller location, which can help with understanding the

altitude and elevation of the quadcopter. These give the quadcopter more advanced flight

functionality.

Quadcopter Drone Controller

5 | P a g e

Aside from the quadcopter, related work on the app side focuses on an MSP protocol app.

There is also a Cordova-based app [9] to control the drone and its design shows a basic UI which

connects to a TCP network through a URL and controls the whole drone via two radars

controlled by numbers on the side. While this is similar to what the project at hand, the

quadcopter’s app is envisioned to be a joystick on the sides. Still, it serves as a possible

inspiration however, the app created will not be utilizing Cordova but instead Expo.

4.0 Design

4.1 Requirements and Use Cases and Design Goals

4.1.1 Requirements

 For this project, there were a few important functional requirements for the quadcopter

flight controller. The controller is a fully functional controller that operates a quadcopter drone

using Betaflight firmware. The controller decodes remote control Pulse-Width Modulation

signals to control the drone during flight. The drone must also output a minimum of 4 motor

control signals that are, each, sent to the respective motor’s Electronic Speed Controller (ESC)

unit. The updated controller has hardware support for communication protocols such as Wi-Fi

and GPS. When the drone is hovering (maintaining a near-constant altitude), no other control

signals such as throttle are sent from a receiver source using a barometric pressure sensor

(BMP280). The drone also has a mechanism for battery protection to prevent permanent damage

to the battery due to weather or any external phenomena.

Alongside the functional requirements, there are some non-functional requirements as

well. The drone should include LEDs and audio output devices to aid the user while operating

the drone by indicating location, if crashed, fallen, lost, low battery, and other things. Features

implemented past this point would exceed the foundational scope of this project. Another feature

that we were looking into that was not a functional requirement is an external application to

control the drone with a smartphone device instead of an RC receiver. This application would

allow the pilot to view sensor data such as altitude and accelerometer/gyroscope data, and battery

life.

4.1.2 Use Cases

In the UML Use Case Diagram, the diagram shows three “actors” (the pilot with any kind

of compatible receiver, the Betaflight firmware, and the power delivery circuit) interacting with

the “system” or the drone in this case. The pilot, either by means of RC controller or through Wi-

Fi mobile app, controls the drone’s movements such as hovering and steering. The pilot through

the receiver, sends control signals for throttle (sets how fast the motors will spin to gain altitude

or stall to lower altitude), roll (controls the drone’s longitudinal axis), pitch (controls the drone’s

traversal axis), and yaw (controls the drone’s vertical axis). Alongside the pilot as the main user,

a battery and the power distribution/monitoring circuit built into the controller delivers power

and protects the controller against any voltage errors. The Betaflight firmware assists the pilot in

flying the drone by using the onboard peripherals.

Quadcopter Drone Controller

6 | P a g e

4.1.3 Design Goals

 The goal of this project is to create a flight controller board that supports more modern

features than the outdated CC3D controller such as simultaneous S-Bus and PPM support for

more flexibility, GPS support, Wi-Fi support, status alerts, and flight stabilization. The end goal

of this flight controller is to have it control a quadcopter drone in a DYS Xcite 320 chassis,

allowing it to hover and do other basic maneuvers. Some stretch goals have been established

such as configuring LED strip and beeper support and creating a mobile application to control

the drone through Wi-Fi.

Figure 1: UML Use Case Diagram

Quadcopter Drone Controller

7 | P a g e

4.2 High Level Architecture

 There were four stages to the Quadcopter Drone Controller project. All four of those

stages are discussed below.

4.2.1 PCB Design

The first phase of the project’s implementation is to design the flight controller PCB

(Printed Circuit Board). Below are two figures: the connection schematic for the entire “drone

system” (Fig. 2) and the microcontroller schematic (Fig. 3). The processor chosen for our

microcontroller is the STM32F405RG [19], which is a high-performance Arm® Cortex®-M4

based processor that can operate at a frequency up to 168 MHz. It can also have up to 1 MB of

flash memory and up to 192 KB of SRAM (Static Random Access Memory). Its low cost,

extensive I/O capabilities, and debug interfaces made a good choice for our flight controller

board. For our drone, a USB circuit, GPS module, Wi-Fi module, an S.Bus connection, and

power monitoring circuit for the drone’s motors were added as external connections.

Figure 2: Component Connections Schematic

Quadcopter Drone Controller

8 | P a g e

 Next was choosing the peripherals. Most flight controller boards operate with

accelerometers and gyroscopes to assist with flight stabilization. The MPU-6050 [8] is a low-cost

IMU that includes a gyroscope and accelerometer on the same package, making it an ideal

candidate for our gyro and accelerometer peripheral. The MPU is connected to the

STM32F405’s I2C clock and data lines. Since there were not enough pins to connect a second

pair of I2C data and clock lines for the magnetometer, the IMU does fortunately support auxiliary

I2C. This allows the IMU to act as its own I2C master to become a 9-axis (gyroscope +

accelerometer + magnetometer) without CPU intervention. Although this does limit the CPU’s

ability to monitor that transaction and make it more difficult to debug that functionality, it does

free up some pins for our controller that could be used for GPIO and other things. The

magnetometer calibrates the IMU to orient itself according to the Earth’s magnetic field.

 In addition, the board includes a barometer, the BMP280 [2]. The BMP280 is mainly

used for mobile applications but its low power consumption and small size make it great for

drone usage as well. Running out of space for another I2C pair, the barometer had to be

connected through SPI instead of I2C. There were some issues integrating the barometer into the

board, which will be discussed in the Peripheral Integration subsection. The last primary

peripheral that had to be soldered on the board was the LIS2MDL magnetometer, which is an

ultra-low power, 3-axis magnetometer [7].

 For the system clock, the OSC-X322516MLB4SI, a very low-cost crystal oscillator, was

added to clock the system at 16MHz. Other traces were made to the PCB to accommodate for

external connections such as connecting a battery to an ADC (Analog-to-Digital), connecting an

Figure 3: Microcontroller Unit Schematic

Quadcopter Drone Controller

9 | P a g e

ESP-8266 Wi-Fi chip to a USART, connecting a GPS to another USART, connecting a reset

switch to the BOOT0 pin to reset the processor when pressed, and connecting the motors to

PWM output.

 The main challenge for the PCB design was getting ordered parts in a timely manner.

ELEG team incrementally soldered each module on the production board while CSCE tested the

peripherals to ensure they could be programmed and showed expected behavior. Another

challenge was correcting any mistakes that were encountered during the peripheral testing

process.

4.2.2 Peripheral Integration

While ELEG team was incrementally adding peripherals and other headers to the flight

controller board, CSCE team was tasked with testing the functionality of the peripherals using

STM32Cube IDE, which is a development tool that allows the STM32F405 to be programmed in

C. For much of February, the production board was yet to arrive or had any parts to test yet. So,

the teams ordered a development board, which is the Olimex STM32-P405 (Fig. 4) [11]. It

features the same processor. The teams also ordered a ST-Link USB Debugger. This provides the

STM32 processor an interface to be programmed by a computer through Serial Wire Debugging

(SWD). Many STM32 microcontrollers do not feature an on-board debugging interface.

After getting the production boards from order, CSCE team tested the board’s USB Serial

interface to read output from the board. To set this up, a virtual COM port driver had to be

installed into a Windows machine and there are libraries in the STM32Cube IDE that supports

USB serial communication, which is the USB_CDC library.

Figure 4: Image of Olimex STM32-P405 Development Board

Figure 5: MISO and MOSI Switch Highlighted in Red Circle

Quadcopter Drone Controller

10 | P a g e

One of the first peripherals to be tested was the barometer. During that period of testing, a

major PCB design flaw was detected. One of the mistakes made in the original PCB design was

the processor’s SDI line, which its input (MISO), was connected to the barometer’s SDI line.

Also, the processor’s SDO line was connected to the peripheral’s SDO. The correct connection is

supposed to be: STM32_SDO → BARO_SDI & STM32_SDI BARO_SDO. Realizing this,

adjustments had to be made to the board. Using tiny, enameled wires, traces were cut to bridge

the correct SDO and SDI lines as shown in Fig. 5. After the fix, the barometer could output

temperature and atmospheric pressure data using STM_HAL functions for SPI communication.

Altitude could then be derived from those variables as shown in the sample output (Fig. 6).

Datasheets that include the derived algorithms used and code for the BMP280 test driver are

provided in the GitHub repositories [21].

Next, the CSCE team tested the MPU-6050. Fortunately, the IMU did not reveal any

further problems with the PCB that were major. At worst, the IMU had to be resoldered on some

of the boards since some of the pads were not making good contact. After creating another test

driver for the IMU using STM_HAL functions for I2C communication, the IMU could output

gyroscope and accelerometer data as shown in Fig. 7. Datasheets and code for the MPU-6050

test driver are provided in the GitHub repositories [21].

After the IMU, the last peripheral that was tested was the LIS2MDL magnetometer. The

magnetometer was a little trickier to test, since unlike the other peripherals on the board, it is not

directly connected to the processor. According to the MPU6050 datasheet, the IMU can be

configured to be a separate I2C master without help of the CPU. This frees up more pins that

could be used for other things for our controller, but it makes it hard to debug this transaction as

the processor cannot see it. To set the IMU to be its own master, the I2C_BYPASS_EN bit in

register address 0x37 (INT_PIN_CFG) must be reset, which disallows the processor of accessing

the auxiliary I2C bus between the IMU and magnetometer. Then, the I2C_MST_EN bit in

register address 0x6A (USER_CTRL) must be set, which allows the MPU-6050 to act as master

for the magnetometer. Doing this will initiate a separate master-slave transaction between the

IMU and magnetometer, which produces the similar output shown in Fig. 7, but the board

Figure 6: Sample Barometer Output

Figure 7: Sample IMU Output

Quadcopter Drone Controller

11 | P a g e

showed to be more responsive to orientation changes. Datasheets and code for the IMU-Mag test

driver are provided in the GitHub repositories [21].

4.2.3 Betaflight Configuration

 After testing the last peripheral to be soldered on the board, CSCE and ELEG teams

moved into stage 3 of the project, which was to flash Betaflight and configure it to our custom

pinout. While the magnetometer was being tested, research was done to figure out how to flash

the base Betaflight firmware onto the controller. At first, it was assumed the CSCE team would

have to change the firmware that is mainly coded in C and compile a hex file for every

configuration change. Although this would be the more interesting approach, unfortunately, the

teams fell behind on schedule due to waiting nearly a month for equipment to arrive on order and

a period of severe snow weather holding up further development on the production boards. Also,

this approach would be proven to be even more unfeasible for the teams since development

proved to be rather difficult without having a production board on hand. Only three boards were

created, which made it difficult for those who were not one of the three who had a board to do

much development. Remote Desktop tools such as AnyDesk were used to try to combat this

issue, but they were ineffective due to technical/networking issues.

 Fortunately, Betaflight has a configurator GUI tool (Fig. 9) that made the configuration

process a little easier. CSCE team still had to figure out how to create a unified target for our

custom board to create a fully functional flight controller by using the included command line

interface. To flash firmware, generic USB firmware was installed into the board so Betaflight

firmware could be flashed with the board in DFU (Device Firmware Upgrade) mode.

After the firmware was flashed and the controller appeared as a COM port in the

configurator, CSCE team had to then go into the command line of the configurator to describe

pinouts and other behavior to have Betaflight load the correct drivers for the hardware. In the

command line, there were many commands such as resource, set, timer, and dma to configure

the hardware. The “resource” command essentially designates the pins of the processor. It tells

Betaflight where the chip select pin for the barometer is, where the I2C clock and data lines are,

where the motor outputs are, etc. The “set” command sets different variables that describe the

hardware such as the i2c_address for the IMU device, the IMU hardware, the barometer

hardware, lowpass filters, gyroscope alignment, receiver modes, etc.

 One of the biggest challenges for the teams was setting custom configurations in

Betaflight. Although Betaflight does have some flexibility to work with different combinations

Figure 8: Betaflight Configurator Setup Menu

Quadcopter Drone Controller

12 | P a g e

of hardware, setting custom configurations for custom board hardware like this is beyond the

normal use-case, according to one of the Betaflight developers. The normal use case was loading

pre-configured unified targets as Betaflight includes many different targets. The official

Betaflight repository did not have sufficient documentation for configuring custom hardware

after flashing generic STM32F405 firmware. In fact, there was some important documentation

that was missing. Notably, the user must configure timers and DMA (Direct Memory Access)

channels for some features.

 The timers give the processor some sense of timing for operations such as motor output,

I2C operations, and the Analog-to-Digital converters for the battery indicator. Direct Memory

Access can also be important depending on the hardware setup. Direct Memory Access allows

peripherals to, as the name implies, directly access memory instead of accessing by calling to the

CPU to get the data from memory. This can be important for reducing load off the scheduler in

Betaflight’s RTOS. There could be many things trying to interact with the CPU at a time such as

the IMU, the barometer, a GPS, video feed data, etc. While the drone is in flight, it is important

to minimize the amount of load onto the CPU as much as possible to reduce the risk of

Betaflight’s scheduler not being able to handle a critical task on time. After this was discovered,

a pull request was made and is merged to the official Betaflight repository to include this

documentation.

 The next peripheral to configure was the GPS module, a RDQ Mini 8. This is a GPS

module that works out of the box. Not much had to be done to the configuration to set the GPS to

work. All that was done was setting the USART3 port to a GPS sensor input and setting the GPS

protocol to UBLOX, which is a standard GPS protocol. After that, Betaflight configuration was

mostly done. ELEG team scheduled for a certified drone pilot to test our drone and it flew

successfully.

The last thing that was configured on Betaflight was the PID (Proportional, Integral,

Derivative) controller in Betaflight. In the first test flight of the drone, it was observed that the

drone tended to overcompensate to feedback. The drone could hardly fly and could not land due

to the hypersensitivity to the external feedback. This was due to not tuning the PID controller in

Betaflight. For the next test, additional configurations were made to tune the P value, D value,

and RC rate values. These settings, in addition to enabling a “Horizon” mode, made the drone fly

much smoother and easier. The final drone is shown in Fig. 10 below. Any future improvements

or tuning that could be done to the drone will be discussed in the Future Work subsection.

Figure 9: Final Quadcopter Photo

Quadcopter Drone Controller

13 | P a g e

4.2.4 App Design

 For the app design, the app documentation is provided along with the TSDoc comments

implemented into the code. But for the baseline, the app started as a testing ground for HTTP

requests. It was created using expo and react native as a naïve basic app. A mock drone server

was created first which held the POST and GET methods for the mock drone to communicate

with the app and vice versa. The app would utilize a useEffect hook to obtain information every

few seconds within an interval. The fetching was done asynchronously from an endpoint and the

information sent would be simulated such as the battery percentage of the drone, the acceleration

and heading of the drone, the gyroscope’s current axis, the altitude of the drone, the temperature

and pressure which will help determine the absolute altitude of the drone, and other sorts of

information necessary. Initializing these to a reasonable number allows the app to be used as a

proof of concept. Through this information, the information can be sent back after the joystick

was implemented.

Before the joystick’s debut, the app was designed with a map and the foundation was

changed using clever hooks that contained useState. The map allowed the usage of location data

which allowed the drone to communicate its place with the phone. Initializing it from earlier, the

drone would be able to be planted in 3D space with the current altitude, heading, yaw, throttle,

etc. Another issue was the map itself would sometimes break so an override was created to

ignore errors and test for issues when necessary. The app’s imports of these libraries did not slow

down the app by very much however when it was introduced that the joystick’s compatibility

would slow down the app by a large margin, the joystick would have to be done from scratch.

The joystick consisted of creating an inner and outer circle. However, the inner circle

cannot hold in its own container unless a function prevented it from doing so. This caused a

function called boundsLimit to be the key feature in holding the joystick together. Implementing

a panResponder, the joystick would be in motion. The joystick had minor setbacks which were

fully documented in the documentation but empty testing grounds were created to circumvent

this situation. The joysticks were needed to be differentiated for their different purposes and

using this information, it was sent back to the fly screen to be sent directly to the server. Because

the server is the main computation component, if the ESP8266 was implemented, it would have

been necessary for it to hold the computation as well. The mock server computed based on the

joystick’s location and allowed the drone to fully move and change the coordinates which would

be reflected on the map.

The last part of the app would be to create an app with TCP protocol similar to the

Cordova-based app for TCP. With expo, it would be difficult because of time-constraints, so it

would be something to be pushed to future work. The app is shown in Fig. 11 below.

Figure 10: Final App Photo

Quadcopter Drone Controller

14 | P a g e

4.2.5 Future Work

Due to time constraints, there were a few things that could have been done if the teams

had extra time. One of the bugs that were encountered for the board design is whenever the board

loses power, the board also loses Betaflight and the peripherals. When the board receives power

again, Betaflight isn’t re-enabled unless the reset button is held. However, still, most peripherals

won’t be enabled again as they should unless the board is connected to a computer again to set

up Betaflight. The configuration is saved in the board, but not everything turns on as it should

unless Betaflight is reset. It doesn’t impact the core functionality of the board just as so long the

board is receiving power. It’s just a major inconvenience to connect and disconnect the board

repeatedly every power cycle. This could be a flaw in the PCB design or a timer initialization

problem in Betaflight. The board is also currently missing support for an LED strip and a beeper

to signal the pilot on critical statuses such as low battery, GPS lost, and other failsafe protocols.

This can simply be implemented with more commands in the Betaflight Configurator.

A major feature that the team intended on implementing is an app to send control signals

(Throttle, Roll, Pitch, and Yaw). The app was to also be able to receive sensor values from the

barometer, IMU, and GPS modules. There is a Cordova-based app that is like how we envisioned

the app to be. It connects to the ESP8266 via TCP connection, and it controls the flight controller

as a Wi-Fi receiver using MSP (Multiwii Serial Protocol) commands. While it does pull CPU

Usage and AUX (Auxiliary) channel data, it currently does not receive data sensors data. This

proves that the implementation is possible. There just was not enough time to reverse-engineer

and create a new app from the ground up.

Another thing that could be done is to verify the sensor fusion between the IMU and

magnetometer. In our schematic, the IMU and magnetometer are connected between their own

I2C interaction. Betaflight can be coded to enable the IMU to be a I2C master without the CPU’s

help. The point of the magnetometer is to provide the IMU calibration data without having to set

it in Betaflight. Using oscilloscopes show that there’s data being passed in the auxiliary SDA

line, but in Betaflight’s perspective, there is no way in verifying if the IMU interfacing with the

magnetometer.

Quadcopter Drone Controller

15 | P a g e

4.3 Risks
Risk Risk Reduction

Board Failure This design is focused on the two boards: First

the flight controller board, then the power

monitoring board. In the case of a complete

failure of the flight controller board, the

motors will lose power and the drone will fall

out of the air. If the board were to have a

partial failure of the flight controller board,

systems of the drone could be shut down

reducing the chance of injury to by standers.

In the case power monitoring board failure,

there is the chance that the lithium ion (or

lithium polymer) battery could be ruined. To

prevent this from happening, we will be

incorporating a sensor to monitor the level of

the battery to avoid under-volting. Using the

battery monitor and Betaflight’s failsafe

configuration tools, the user will be notified

that the battery is running low, giving them a

chance to land the drone before it loses power.

Misuse If not implemented properly, the design of the

controller can be misused. The controller can

be attached to almost any quadcopter with any

intentions. The end user must have a warning

about safety and misuse of the device, as well

as the laws surrounding it.

Safety Issues Without regulation, the quadcopter can fly up

to 400 ft into the air, where it has the

possibility to interfere with low flying air

traffic. This must be monitored to fit within

drone flying regulations set by the

government. Also, the end user must be

warned about the risks of flying near

power/utility lines. The quadcopter must also

be used by a licensed flyer.

Environmental Issues Since the finished quadcopter will use a

lithium polymer battery, there is a concern

about proper disposal of such battery. Proper

disposal must be advised on final product. A

licensed flyer can also help check for

environmental concerns of the drone.

Destroyed Board In case if one of the controller boards were

destroyed for any reason, 3 duplicate boards

were developed.

Quadcopter Drone Controller

16 | P a g e

CPU Overload Direct Memory Access channels were

configured in Betaflight to prevent the CPU

from being overloaded with tasks. This is

especially important during flight so

Betaflight will always have enough time to

handle critical tasks.

4.4 Tasks

Understanding:

• Base flight controller design

• STM32Cube IDE

• BMP280 Functionality

• MPU6050 Functionality

• LIS2 Functionality

• Betaflight Configuration

• Timer & DMA Channel Setup (Betaflight)

• Receiver Signal (PPM or PWM or S.Bus)

• React-Native Framework for App

• TCP/MSP Back-end

• Drone Test Flight

Design:

• Create schematic

• Final PCB layout

• Betaflight custom unified target configuration

• Design react-native front-end

• Design HTTP back-end for app

Implementation:

• Print new PCB

• Program board
o BMP280 driver
o MPU6050 driver
o MPU/LIS2 auxiliary I2C driver

• Hardware
o Solder flight controller
o Battery protection circuit
o Support LED and sound indicators

• Betaflight (Software)
o Flash base firmware through DFU
o Configure primary peripherals

Quadcopter Drone Controller

17 | P a g e

o Configure motors
o Configure receiver

Testing:

• Peripheral drivers (BMP, MPU, LIS2)

• Base Betaflight firmware (generic STM32F405 hex file)

• Drone flight (after Betaflight configuration)

• HTTP mock server

• App communication with mock server

Documentation:

• Pin layout

• MCU and Peripheral schematics

• Betaflight Configurator (unified target)

• USB Flashing

• Peripheral Testing

• All required FAA warnings

• App Documentation

Quadcopter Drone Controller

18 | P a g e

4.5 Schedule

Tasks Dates

1. Project Planning 9/15/20 -12/1/20

2. Design: Schematics, Layouts, Test Plan 10/1/20 - 12/1/20

3. Hardware Implementation: PCB Layout, Print Board,

Program Board, Control Signals, Hardware Soldering,

Battery Protection Circuit
10/15/20 - 1/20/21

4. Flight Controller Peripheral Testing: BMP280,

MPU6050, LIS2
2/15/21 - 3/21/21

5. Betaflight Configuration (Unified Target Creation):

Peripherals, Motors, Receiver
3/21/21 - 4/16/21

6. ESP8266 Configuration: Flash esp-link firmware into

Wi-Fi module and Research TCP/MSP Interface for

App
3/21/21 - 4/23/21

7. App Development and Integration: Create HTTP Mock

Setup & Reverse-Engineer MSP/TCP Controller
4/1/21 - 4/22/21

8. Finishing Touches on Drone: Fix Minor Problems and

Test Flight
4/15/21 - 4/22/21

9. Final Deliverables: Poster, Final Report, Final

Presentation, and Website
4/24/21 - 4/29/21

Quadcopter Drone Controller

19 | P a g e

4.6 Deliverables

The deliverables for this project are as follows:

• A System Block Diagram & Specifications: These contain both the hardware and

software components and the PCB layout.

• Flight controller and Peripheral Datasheets: These contains the architecture of the flight

controller.

• Project Website [15]: All related deliverables will be contained on the website such as the

Poster, Presentation Slides, Final Report, and the GitHub repositories with the relevant

source files, config files, and documentation.

• Hardware: The finished flight controller and accompanying power board and other

hardware used for the board will be delivered back to the ELEG department.

• GitHub organization [21]: This contains all the following repositories:
o Betaflight: A forked repository from the official Betaflight repository to make any

needed changes to the codebase.
o DroneCTRL: Contains the source code for the mobile application using the React

Native framework in TypeScript.
o KnowledgeBase: Contains all documentation relating to the project such as

configuring Betaflight, firmware flashing through DFU (Device Firmware

Update), ESP8266 development, STM32Cube debugging, and peripheral

datasheets.
o STM32F4_PerpheralTest: Contains the source code for the drivers to verify the

peripherals on the flight controller in an isolated manner prior to flashing

BetaFlight firmware, using STM32Cube IDE.

Quadcopter Drone Controller

20 | P a g e

5.0 Key Personnel

Zachary Heil - Heil is a senior Computer Engineering and Electrical Engineering double major.

He was responsible for coordinating and leading both teams. On the ELEG team, he was

responsible for soldering. On the CSCE team, he was responsible for app development.

Lily Phu – Phu is a senior Computer Science major in the Computer Science and Computer

Engineering Department at the University of Arkansas. She has completed software engineering

and is experienced in many programming languages. She was responsible for app development.

Stephanie Phillips – Phillips is a senior Computer Engineering major at the University of

Arkansas. She has completed software engineering, digital design, computer organization,

embedded systems and is experienced with C, Verilog, VDHL, and Python. She was responsible

for the backend development of the ESP-8266.

Spencer Ward – Ward is an undergraduate senior computer engineer at the University of

Arkansas. He has experience with VHDL and Verilog, as well as C and C++. Currently in

training for Dr. Di, he is researching asynchronous design technologies. He was responsible for

the backend development of the ESP-8266.

Dishoungh White II – White is a senior Computer Engineering major in the Computer Science

and Computer Engineering Department at the University of Arkansas. He has completed Digital

Design, Software Engineering, and Embedded Systems. He was responsible for testing primary

peripherals on STM32Cube and configuring the Betaflight firmware on the drone controller.

Andy McCoy – McCoy is a senior Electrical Engineering major in the Engineering Department

at the University of Arkansas. He was responsible for hardware testing.

Joel Parker – Parker is a senior Electrical Engineering major in the Engineering Department at

the University of Arkansas. He was responsible for lab setup.

Christ Somophounout – Somophounout is a senior Electrical Engineering major in the

Engineering Department at the University of Arkansas. He was responsible for log book & data.

Skyler Hudson – Hudson is a certified drone pilot and helped test the drone for flight.

Alex Cutsinger (Champion) – Cutsinger is a Software and Electrical Engineer for L3

Technologies, who graduated from the University of Arkansas with a Bachelor’s Degree in

Electrical Engineering. Cutsinger’s interest are robotics and mathematics.

Quadcopter Drone Controller

21 | P a g e

6.0 Facilities and Equipment

• Electrical Engineering Senior Design Lab (Facility) - The ELEG lab has a lot of

important equipment and tools such as soldering irons, oscilloscopes, and other kits to

help debug and create/modify our board.

• Olimex STM-P405 Development Board (Equipment) - The Olimex (red) board is a pre-

made development board that we used to test the barometer and the STM32F405

processor in an integrated development environment (STM32Cube).

• ESP-8266 Wi-Fi Chip (Equipment) - The Wi-Fi chip was used as a bridge between our

flight controller board and our proposed app.

• DYS Xcite 320 Drone Chassis (Equipment) - The DYS chassis is the body of our drone.

• Betaflight Configurator (Equipment) - The Betaflight Configurator is the GUI application

used to flash generic STM32F405 firmware and to configure the hardware on our board

to be used for flight.

Quadcopter Drone Controller

22 | P a g e

7.0 References

[1] Betaflight Home Page, https://betaflight.com/

[2] BMP280 Pressure Sensor, https://www.bosch-sensortec.com/products/environmental-

sensors/pressure-sensors/bmp280/

[3] CC3D Flight Control Board (Users Manual),

https://www.geeetech.com/Documents/CC3D%20flight%20control%20board.pdf

[4] ESP8266, https://en.wikipedia.org/wiki/ESP8266

[5] Expo, https://expo.io/

[6] KiCad STM32 Hardware Design and JLCPCB Assembly,

https://www.youtube.com/watch?v=t5phi3nT8OU&feature=emb_title

[7] LIS2MDL Product Overview, https://www.st.com/en/mems-and-sensors/lis2mdl.html

[8] MPU-6050 Product Overview, https://invensense.tdk.com/products/motion-tracking/6-

axis/mpu-6050/

[9] MSP-Controller, https://github.com/cs8425/msp-controller

[10] Multiwii Serial Protocol Overview, https://ardupilot.org/copter/docs/common-msp-

overview.html

[11] Olimex STM32-P405 Product Overview,

https://www.olimex.com/Products/ARM/ST/STM32-P405/

[12] Olimex STM32-P405 Schematic, https://www.olimex.com/Products/ARM/ST/STM32-

P405/resources/STM32-P103_P405_sch.pdf

[13] PAM vs PWM vs PPM, https://circuitglobe.com/difference-between-pam-pwm-and-

ppm.html

[14] PID Explained for Process Engineers: Part 2 – Tuning Coefficients,

https://www.aiche.org/resources/publications/cep/2016/february/pid-explained-process-

engineers-part-2-tuning-coefficients

[15] Project Website, https://wordpressua.uark.edu/capstone/fall-spring-2020-2021/teams-1-5-

f20/quadcopter_drone_controller/

[16] Pull Request, https://github.com/betaflight/betaflight/pull/10676

[17] React Native, https://reactnative.dev/

[18] Serial Wire Debug, https://developer.arm.com/architectures/cpu-architecture/debug-

visibility-and-trace/coresight-architecture/serial-wire-debug

https://betaflight.com/
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp280/
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp280/
https://www.geeetech.com/Documents/CC3D%20flight%20control%20board.pdf
https://en.wikipedia.org/wiki/ESP8266
https://expo.io/
https://www.youtube.com/watch?v=t5phi3nT8OU&feature=emb_title
https://www.st.com/en/mems-and-sensors/lis2mdl.html
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://invensense.tdk.com/products/motion-tracking/6-axis/mpu-6050/
https://github.com/cs8425/msp-controller
https://ardupilot.org/copter/docs/common-msp-overview.html
https://ardupilot.org/copter/docs/common-msp-overview.html
https://www.olimex.com/Products/ARM/ST/STM32-P405/
https://www.olimex.com/Products/ARM/ST/STM32-P405/resources/STM32-P103_P405_sch.pdf
https://www.olimex.com/Products/ARM/ST/STM32-P405/resources/STM32-P103_P405_sch.pdf
https://circuitglobe.com/difference-between-pam-pwm-and-ppm.html
https://circuitglobe.com/difference-between-pam-pwm-and-ppm.html
https://www.aiche.org/resources/publications/cep/2016/february/pid-explained-process-engineers-part-2-tuning-coefficients
https://www.aiche.org/resources/publications/cep/2016/february/pid-explained-process-engineers-part-2-tuning-coefficients
https://wordpressua.uark.edu/capstone/fall-spring-2020-2021/teams-1-5-f20/quadcopter_drone_controller/
https://wordpressua.uark.edu/capstone/fall-spring-2020-2021/teams-1-5-f20/quadcopter_drone_controller/
https://github.com/betaflight/betaflight/pull/10676
https://reactnative.dev/
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug

Quadcopter Drone Controller

23 | P a g e

[19] STM32F405RG Product Overview, https://www.st.com/en/microcontrollers-

microprocessors/stm32f405rg.html

[20] ST-Link-V2 Description, https://www.st.com/en/development-tools/st-link-v2.html

[21] UARK Quadcopter Flight Controller GitHub Organization, https://github.com/UARK-

Quadcopter-Flight-Controller

[22] UART vs SPI vs I2C Protocol Differences, https://www.rfwireless-

world.com/Terminology/UART-vs-SPI-vs-I2C.html

[23] XCITE 320 Quadcopter, https://hobbyking.com/en_us/dys-320-glass-fiber-folding-

quadcopter-with-storage-case-pnf.html

https://www.st.com/en/microcontrollers-microprocessors/stm32f405rg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f405rg.html
https://www.st.com/en/development-tools/st-link-v2.html
https://github.com/UARK-Quadcopter-Flight-Controller
https://github.com/UARK-Quadcopter-Flight-Controller
https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html
https://www.rfwireless-world.com/Terminology/UART-vs-SPI-vs-I2C.html
https://hobbyking.com/en_us/dys-320-glass-fiber-folding-quadcopter-with-storage-case-pnf.html
https://hobbyking.com/en_us/dys-320-glass-fiber-folding-quadcopter-with-storage-case-pnf.html

