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Abstract 

The problem to solve is to improve an open-source handwriting recognition model. The overall 

objective is to improve the already 75% accuracy to 90% accuracy with several avenues to 

continue forward. As time goes on, scanning documents for information will get increasingly 

more important as copying or translating written information to a machine-readable state takes 

time and money to do. For this reason, it is important for a program to exist that scans documents 

for letters and words and converts them to a far more readable and easy-to-store state for 

computers so that chronicling information is faster for people who need to record information but 

cannot bring devices with them to do so. 

1.0             Problem 

As we continue to store more data electronically, there are still various documents that 

are being handwritten, such as loan applications or medical reports. Handwritten reports may not 

have machine-readable text that document processors can process.  

This problem has led to the development of Handwritten Text Recognition (HTR), which 

applies Deep Learning to process handwritten documents into a machine-readable form. 

However, open-source HTR projects have yet to reach a level of performance to be used in 

enterprise applications. Because handwriting differs between each person, so does accuracy. 

Having a computer be able to read in handwriting regardless of writing style allows data logging 

individuals to save time when it comes to copying that information and reduce the likelihood of 

errors, such as hand-typed in typos, in the machine-readable text. 

2.0             Objective 

The objective of this project is to build upon and experiment with model architectures 

and data manipulations of an open-source HTR Deep Learning model to improve the accuracy of 

performance. To improve the accuracy of the HTR Deep Learning Model, we worked with 

several technologies used in the model, including the CNN layers, RELU function, replacing the 



optimizer with an Adam optimizer, and switching between an LSTM and a 2D LSTM, and 

increasing the dataset size with the IAM. 

By experimenting with the model, we were able to gain more experience and 

understanding of each individual part, and thus applied our newly gained knowledge of machine 

learning, improving aspects of the model as well as resulting in improved accuracy. 

3.0             Background 

 

3.1              Key Concepts 
 

The first key technology that we dealt with was CNN layers. CNN is short for 

convolutional neural network. Using a CNN allows us to use nodes to assign importance, also 

known as weight, and also assigns threshold [7]. CNN is a common approach to dealing with 

handwritten character recognition and was one of our focus points while experimenting [1]. Our 

input image would first be fed into our CNN layers. These layers are trained to extract the 

relevant features from the image that we need. Every layer in the CNN would consist of 3 

operations. The first operation would apply a filter kernel of 5x5 in the first two layers and a 3x3 

in the last 3 layers of the input. A filter kernel is a matrix of numbers that would be multiplied 

times our input image in order to alter the image values. After that we would apply a nonlinear 

RELU, Rectified Linear Unit, function. Finally, a pooling layer summarizes image regions and 

outputs a downsized version of the image.  

The CNN layer uses nodes known as Neurons that are placed in layers. The connections 

neurons have between each other are known as synapses. The neurons first receive an input 

signal from a source, perform calculations, then send output signals further in the CNN through 

the synapse.  

With each synapse there is a weight that goes along with it. This weight represents the 

strengths between the neurons. If the weight from node 1 to node 2 has greater magnitude, it 

means that neuron 1 has greater influence over neuron 2. A weight decides how much influence 

the input would have on the output.  

Along with the weight there is a corresponding gradient that goes along with it. The 

gradient tells how sensitive the cost is to change in its weight. If we have synapse A that has a 

gradient of 3.2 and a synapse B that has a weight of .1, then a change in weight of synapse A is 

32x more sensitive than a change in the weight of synapse B. 

After our input is run through the CNN, a nonlinear RELU function is applied to it. 

RELU, Rectified Linear Unit, is a piecewise function that would return our input if our input is 

greater than zero, and would return 0 if our input is less than 0. The RELU function is linear for 

values greater than zero which makes it great for backpropagation.  

Backpropagation is a class of algorithms that compute the gradient of the loss function 

with respect to its weights. Backpropagation is how we adjusted the weights and biases of our 



neural network in order to get the desired neurons to fire. For example, if we are trying to have 

the letter A be recognized by our neural network, we would want to adjust our values and biases 

so that neurons that have a positive impact on our neural network recognizing the letter A 

become more active.  

RELU functions are often used because it is a model that is easier to train and often has 

satisfactory performance [2]. We applied this nonlinear RELU function because it would be 

close to linear or linearly separable. To understand linear separability, imagine there is a set of 

data points with half being blue and half being red. The data set would be linearly separable if 

there exists a line that can be drawn in the plane such that all the blue points are on one side of 

the line and all the red points are on the other side.  

The other reason a RELU function is used, as opposed to a sigmoid function, which is a 

function that would return values ranging from either 0.0 to 1.0., is that the RELU function does 

not suffer from the vanishing gradient problem. The vanishing gradient problem, also known 

as the exploding gradient problem, is a problem that arises when computing gradients during 

backpropagation. In order to calculate the gradient for a node in a neural network, we used all 

node gradients that have outward synapses to our current node. There is no issue at the start, but 

as we go further back each node starts to have more and more connecting gradients, resulting in 

an increasing number of calculations. With how large our neural network is, this problem gets 

worse as worse as there are tons of nodes. It gets worse and worse due to a gradient at any point, 

being the multiplication of all gradients at prior layers. If we were to use a sigmoid function, all 

our gradients would be between 0 and 1, which would mean as backpropagation occurs, each 

nodes gradient gets smaller and smaller. As a result of these small numbers, our accuracy would 

be very low, along with backpropagation would take a long time. Therefore, a RELU function is 

used, as it is not bounded by 0-1, meaning no vanishing gradient.  

RNN, Recurrent Neural Network, are a class of artificial neural networks where 

connections between nodes form a directed graph along a temporal sequence. RNNs would allow 

us to use previous outputs to be used as inputs, so for ours we would be using the outputs from 

our CNN to pass them into our RNN. One problem with RNNs is that they too can also often 

lead to a vanishing/exploding gradient. A special type of RNN called Long Short-Term 

Memory (LSTM) can also help to solve this issue.  

An LSTM is a special type of RNN. LTSMs specialize in remembering information for long 

periods of time. They can propagate information over longer distances and provide more robust 

training characteristics than normal RNN. The reason why LSTMs can help with solving the 

vanishing gradient problem is through its use of a cell state and a forget gate. The reason for this 

is very math heavy, but they effectively solve the vanishing gradient problem by preventing the 

gradient from going to 0 as a function of the number of samples seen thus far [16].  Our model 

consisted of two LSTM layers. 

Another key technology that we used was a 2D-LSTM. A 2D-LSTM is an alternative 

kind of LSTM. The difference between a 2D LSTM and a regular LSTM is that a 2D LSTM 

takes in 2D input as its input, as opposed to the regular 1D input. A 2D LSTM was a potential 



improvement in this project due to the fact the input would be passing in is an image, which 

came in a 2D form. Although we were not sure if this would improve the accuracy to start [3], it 

was one of the focal points of our experimentation. 

After our image goes through the LSTM, that output along with the ground text is sent to 

a CTC. CTC stands for Connectionist temporal classification and is a type of neural network 

output and scoring function that is used for training LSTMs. The CTC function would compute 

the loss value of the neural network. The loss value is basically how well or how poorly our 

neural network was doing. The higher the loss value the worse that the neural network was 

doing. A perfect neural network would have a loss value of zero. 

In order to train our dataset, we used an input data set from IAM. The IAM Handwriting 

Database contains forms of handwritten English text which can be used to train and test 

handwritten text recognizers and to perform writer identification and verification experiments. 

The IAM database consists of 1,539 pages of scanned text, 5,685 isolated sentences, 13,353 lines 

of text, and finally 115,620 words. 

Error in machine learning is known as Loss. Loss can occur to due to a variety of 

reasons, including inaccurate assigned weights. This is especially the case due to how weights 

are imperfect and not always accurate. In order to deal with loss, we used an optimization 

algorithm to update network weights and the learning curve of the neural network, allowing for 

more accurate results. 

Another term/concept that would be involved in this project is an Adam optimizer. An 

Adam optimizer is an optimization algorithm that can be used to iteratively update network 

weights based on training data. The Adam optimizer is used instead of a classical stochastic 

gradient descent procedure. A stochastic gradient descent would maintain the single learning 

rate, alpha, for all weight updates and the learning rate does not change during training. Adam 

instead calculates an exponential moving average of the gradient and the squared gradient, and 

the parameters beta1 and beta2 control the decay rates of these moving averages. Beta1 is the 

exponential decay rate for the first moment estimates, while beta2 is the exponential decay rate 

for the second-moment estimates. The downside of using Adam was that our number of epochs 

increased, thus resulting in longer periods of time training the model. 

For our project we often got various inputs from letters that looked very similar to each 

other. Examples of characters that were easily mistaken for one another are the characters “a” 

and “o” and the characters “l” and “i”. In order to distinguish between these characters, we 

looked at a very small feature of each character that can be much harder for a machine to find. 

We attempted to fix this by using decoder with one of two algorithms. One of these two 

algorithms is word beam search. Word beam search worked by having each of our inputs be in 

either two states, a word state or a non-word state. When in the word state we were only allowed 

characters that would form words, compared to when we were in a non-word state, we did allow 

characters like “ “. We could only move from a word state to a non-word state when we are 

finished with a word and could move from the non-word state to the word state when we receive 

another character. 



The other algorithm that we could use was called token passing. For token passing we 

used a dictionary and a word language model. The algorithm would search for the most probable 

sequence of words in the dictionary in the neural network output. One problem with token 

passing is that it could struggle with punctuation in words and numbers. 

We have also used a python spellchecker to influence our model. A spellchecker allows 

for text to be exposed to the algorithm, and is capable of detecting, highlighting, and correcting 

grammatical errors within said text. This can be implemented within our program to detect 

possible grammatical errors that result due to incorrectly read text within the model. 

 

3.2              Related Work 

CAPTCHA [11] is a service that checks if the visitor is a robot by sending them a garbled 

message that only humans can solve while computers struggle with immensely. ReCAPTCHA 

on the other hand decides to take this pattern recognition ability that human brains have and put 

it towards digitizing words from printed media and help train AI to recognize images in a photo.  

Our project was meant to work on its own after a good amount of training and it was also open 

source in comparison to ReCAPTCHA. 

Gboard [12] is a service provided by google that incorporates both predictive text and 

translating handwriting to text. However, it is only available on Android devices and backed by 

Google while our handwritten recognition model would be open source and thus free to use 

elsewhere.  

Microsoft OneNote [13] is a service that is offered by Microsoft that not only accepts 

PDFs, but it can also translate any written text on it into machine-readable text. This may seem 

like a superior program to our project, but, however, it’s run by Microsoft, while ours was open 

source, making it more available for others to use as a basis in their own programs. 

4.0             Design 

4.1              Requirements and/or Use Cases and/or Design Goals 
Our primary design goal was to achieve 90% accuracy from the initial 75% accuracy 

from the given open-source HTR Deep Learning model. We would experiment with the code 

from a variety of approaches to attempt to achieve this 90% accuracy. 

4.2 Detailed Architecture 

The primary focus in our project is making improvements to each aspect of the overall 

model architecture. One of the aspects of the model we were working on is the input images. By 

changing the input dataset, we can change the accuracy to which the model is able to discern 

each word. 

Below is a simple overview of the model [15] 



 

 

The model used 5 CNN layers that allow for the model to identify features within the 

input image. These features allowed for the model to distinguish between individual characters. 

More features allowed for the model to detect more individual features of a character, but having 

too many features could cause the model to detect unexpected features that can harm the 

accuracy of the model. As such, we determined that changing the number of CNN layers had 

lower priority than other approaches. 

There were 2 RNN layers that allowed the model to make connections and produce predicted 

results. These results are then passed to the decoder, which makes use of the information to 

determine the produce a guess for the word along with outputting a confidence level. 

Below is an example of one of our input words: 



  

The above word’s recognized probability: 

 

We tried utilizing DeslantImg to process the word and remove any slanted writing style, 

customary to cursive, and then funnel it into the process. Below is an example word that had 

been utilized in this fashion and it neatly outputted the processed sample. However, due to how 

our current sample given to us did not have any slant, it did not change with the word at all. 



 

In the Deslant program, we were given example images to process through the program and we 

have been given these results.  

These were tests 1 through 5, given to use by the DeslantImg github and practicing 

processing it. Test 1 was the standard test, just a simple, short phrase that’s easily readable. 

 

Test 2 was a bit of a longer phrase or sentence to smoothen out. 



 

Test 3 was a test of minimalism, taking a single line and deslanting. 

 

Test 4 was long and very faint, testing if it was readable enough for the program to work. 



 

Test 5 was short and bold, even a little blurry and different, to see if it worked here too with a drastically 

different style. 

 

 

 

We also experimented on the dataset upon which the model had been trained. For this, we used 

an IAM dataset which contained a database of many different handwritten words. 

Below is one of the words in our IAM database: 



 

We also added an augmented dataset based on the IAM dataset that takes the images and applies 

changes to them, such as blurring the image, applying random transformations, adjusting line 

thickness, and adding random noise. 

Below is an example of an image with increased blur: 

 

As we experimented on our project, we have also focused on other approaches to our model. 

One such example was using our model on full lines, rather than single word inputs.  

For example, we would use the following: 

 

Our most successful approach was through the postprocessing of the model’s output, 

specifically through spelling correction. The packages we originally tried for our spelling 

correction were pyspellchecker and textblob. After testing how successful each one was, we 

found that pyspellchcker led to an increase of about 8% in the model, while textblob only 

increased the model by about 5%. Along with this we also tried to implement grammar 

correction to subsidize the spell correction. The original intent was, as pyspellchecker gives you 

a list of possible candidates for correction, to send all of the possible corrections, in sentence 

form, to the grammar corrector, and test all potential candidates to see which sentence was the 

most grammatically correct. However, this idea had to be scrapped as all the grammar packages 

we could find, gramformer, languagetool, and grammar-check, either were broken or did not 

give us an output that would be helpful for the model. 

By implementing the spellchecker with our other approaches, we determined that 

deslantimg was causing harm to our results and caused an approximate 5% decrease in accuracy. 

Certain aspects of our augmented dataset were also able to provide improvements, notably the 



images with random noise and the randomly stretched images. Overall, we were able to increase 

the accuracy of the model from approximately 70% to 81%. These numbers can vary and are our 

approximate results after calculating the accuracy multiple times. 

 

4.3              Risks 

Risk Risk Reduction 

 Incorrect output poses a risk 

to the data and thus can cause 

issues in recording 

 By raising the accuracy of the output, we can reduce the risk 

of errors. 

 Unique handwriting styles or 

sloppy handwriting may 

influence the output 

 

 Working with a variety of input and working with the de-

slant image code may reduce this risk 

4.4              Tasks 

We were provided with a repo that already contained prebuilt methods and command line 

arguments for training and validating the model. Thus, most of our time was spent on 

experimenting with different model architectures and image transformation methods rather than 

building the train/test pipeline from scratch. The original model performed with an accuracy of 

around 75% on the IAM Offline Handwritten Text Recognition (HTR) dataset. We experimented 

to improve the performance of the Open-source Handwritten Text Recognition (HTR) Deep 

learning model to meet the enterprise applications performance threshold of ~90%. 

For implementation and design, the model that was offered to us was an open-source 

code in a Github repository. This Handwritten text recognition model used Python as the 

programming language, implemented with TensorFlow (TF) and trained on the IAM offline 

HTR dataset. The model took images of single words or text lines (multiple words) as input and 

output the recognized text. Three quarters of the words from the validation-set were correctly 

recognized, and the character error rate was around 10%. 

We used an agile methodology to manage our project and the framework we chose was 

bi-weekly scrum. The timeline was between 16 – 20 weeks (about 4 and a half months). CGI 

acceptance rate for projects is 90%. So, in order to get our project to 90% we met meeting every 

two weeks and assigned tasks by sprint.  

 

SPRINT 1 

• Create Website 

• Create Github Account 

• Setup Jira Board to assign tasks 



• Fork repository to our team repository 

• Create virtual environment to add all plugins and packages 

SPRINT 2 

• Research Spike: Data Augmentation Methods for handwriting 

• Load IAM Dataset 

• Develop Data Augmentation Python class- We used the information from Research Sike to 

develop this class 

• Creating the Augmented Dataset- We used the data set that was provided by [17]. The dataset 

characteristics have 657 writers who contributed samples their handwriting 

• Data augmentation: As a result of limited data, we would increase the dataset-size by 

applying further (random) transformations to the IAM input images. These changes would be 

flipping, translations, or rotations to our datasets. By creating these changes our neutral 

network created a different dataset.  Now, only random distortions are performed. The four 

augmentations we implemented were random noise, blur, random stretching of the image, 

and adjusting the line thickness 

 

SPRINT 3 

• Train and Validate New Model on Augmented Dataset and put together result 

• The Decoder-  It uses token passing or word beam search decoding to constrain the output to 

dictionary words. We were able to add this to features. 

• Change the Optimizer 

• Remove cursive writing style in the input images (see DeslantImg). We will be using the 

Deslanting Algorithm, which can be found in an open-source repository. This algorithm sets 

handwritten text in images upright, i.e., it removes the cursive writing style. One can use it as 

a preprocessing step for handwritten text recognition. 

SPRINT 4 

• Integrate and experiment with spellcheckers- We decided to add more spell checkers to 

improve our algorithm. We added Py spellchecker and Text blob to help correct the model’s 

mistakes. We tried to use Gingerit grammar checker to check the grammar of the output but 

failed after several tries.  

• Text correction- Often when our program is trying to decode the handwriting, it is often off 

by one or two letters. For example, it could possibly read “oronge” when the real word is 

supposed orange. The text correction, using a set dictionary of common words, we will try 

different combinations of commonly confused letters, like a’s/o’s m’s/n’s r’s/n’s.  

• Increase CNN layers 

• Replace LSTM by 2D-LSTM- We were unable to add this feature because it will cause 

algorithm to be overfitted 



4.5              Schedule – 

Tasks Dates 

1. Meeting with Industry champion on what needs to be done… 10/19 

  

2. Get familiar with repo, AI, and python 10/26-11/30 

3. Data augmentation 11/16 - 11/30 

4. Increase input size 12/14 - 1/25 

5. Load IAM Dataset 

Research Spike: Data Augmentation Methods for handwriting 

Develop Data Augmentation Python class 

Creating the Augmented Dataset 

1/25 - 2/17 

6. Replace optimizer 

Remove Cursive Writing Style 

Train and Validate New Model on Augmented Dataset 

The Decoder 

2/22 - 3/15 

8. Text correction 

Add more CNN layers 

Replace LSTM by 2D-LSTM 

Decoder. 

3/15 - 3/29 

9. Testing and Validation 3/29 - 4/19 

10. Documentation 4/19- 5/3 

4.6              Deliverables 

• Design Document: Contains a listing of each major software component and the resulting 

changes to each component 

• Initial data: The starter code: SimpleHTR, DeslantImg, LineHTR, CTCWordBeamSearch 

• Python code for the resulting HTR program 

• Final Report 

5.0     Key Personnel 
William Farris is a Senior Computer Science major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has completed relevant courses.  



Baron Davis is a senior Computer Engineering major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has completed relevant courses. 

Creighton Young is a senior Computer Science major in the Computer Science and Computer 

Engineering department at the University of Arkansas. He has completed relevant courses. 

Micheal Oyenekan is a senior Computer Engineering major in the Computer Science and 

Computer Engineering department at the University of Arkansas. He has completed relevant 

courses. 

Nathaniel Zinda is a Machine Learning Engineer at CGI and was the main contact for the first 

half of this project.  

Rishi Dhaka is a Machine Learning Engineer at CGI and was the main contact for the remaining 

portion of the project. 

6.0     Facilities and Equipment 

Due to the nature of the project at hand, the equipment and equipment. On the equipment end, 

personal computers were all that were necessary to use. For facilities, computer labs would 

occasionally be useful in the case of meetings and working together. 
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