
CSCE 4963 – Spring 2021 - ReZerve

Group 6: Colton Tucker, Tyler Gerth, Rylan McAlister, Dalynn Hatch, Brayden Alvarez,
Landry Ishimwe Karangwa

CSCE 4963 1

API Documentation

ReZerve
4/29/2021

Firebase
Firebase is used as our database and user authentication schema. We used Firestore within Firebase

(a no-SQL database with JSON hierarchical collections) as the main storage for our application, and

we designed it to be as close to normal SQL as we could (in terms of linking different collections

together via document keys). We found that it would be the best to implement due to its scalability

and flexibility. It was implemented over time and slowly added into the application, refactoring as

necessary until we finished our pages. Testing was done with mock data. To bring Firebase into our

website we created interface files whose only job was to keep all of the variables and data types

consistent throughout. From there we imported the respective Firebase libraries and created

development rules on how everyone should use Firebase consistently.

Our main database collections were for businesses, customers, and employees, and each of these

might be associated with sets of messages and appointments. Then, to access this data, we used

Firebase documentation to create queries for specific user data, rather than pulling everything into

our application and sorting from there.

For the Authentication, we used Firebase Authentication to create user accounts for both employees

and customers. This allowed them to login to our application and be presented with different user

interface flows depending on their role. By using Firebase Authentication, we were able to set up

persistent authentication where a user could close down their web browser or refresh the page and

still be logged in, due to the fact that Firebase Authentication stores user login information in the

local storage of the browser.

Google Maps
The Google Maps API was used so that we could access location data for the various places that a

customer might search when looking for a barbershop/salon, as well as for encoding an address into

lat/lng coordinates when a business initially signs up and creates an account. We used the Maps API,

CSCE 4963 2

the Places API, and the Geocoding API. The Maps and Places APIs were free (up to $200 worth of

credit which we never reached), and the Geocoding API cost 0.005 USD per query (so $5.00 per 1000

requests).

Stripe
Stripe is used as our payment API to allow the customers to pay for their bookings. It was used

because as compared to similar payment APIs we found that this would be the easiest to integrate

due to the documentation available and compatibility with React and TypeScript. On the website

during the checkout process the customer is given a prompt for card number, CVC, expiration date,

and zip code. There was also another server needed (also hosted on Heroku) to fully implement

Stripe. Essentially what it does is allow the website to communicate with the authentication servers

that Stripe has in a safe, encrypted, way. During the talks with the server the correct amount of

money is taken from the user’s card, and split correctly between the business and our product

champion (a small fee for providing the application infrastructure for users).

Heroku
Heroku used as our host for the application and Stripe payment server. It allowed us to have our

application and server deployed in an “always-on” state that could be accessed any time. It also

allowed us to do things like connect out Github repository into it for ease of deployment and store

secret API keys in a place that wouldn’t be accessible from the code. It was used because it was the

hosting service we were all the most familiar with. For the duration of development and testing it

was just used on the free plan. It served the purposes we needed for the time being. We spent a

total of $7 a month on this specific hosting service once we were ready to go into a more “live” state.

