Sign Language Teacher/Interpreter using Xbox Kinect

David Clairmont,

Johnny Doan, Jack Gaither,

Nick Hester, Sam Witucki

Abstract

- American Sign Language
 - Difficult to learn
 - Many different Platforms but lack ability to keep students engaged
- Objective
 - Develop Sign Language Teacher to improve learning process
 - Make learning ASL easier and more fun
- Approach
 - Train Al using Xbox Kinect by using references
 - References will sign letters and phrases

- Digital image processing
 - Computer analyzes an image using algorithms
 - Compression
 - Enhancement
 - Restoration
 - Needed to pick out human body structure from image

- Computer vision
 - Computers interpreting images as humans do
 - High level understanding of image
 - Algorithms capable of this are complicated
 - Require AI

- Al action recognition
 - Al correctly recognizing an action taking place in an image
 - Subset of computer vision
 - Usually trying to recognize human actions
 - Often requires deep learning and large amount of input data to train the AI

- Sign language
 - Will be using American Sign Language
 - Commonly used in English speaking countries
 - Own language separate from English
 - Different grammar rules
 - Unique signs for letters, numbers, words
 - Use hands, face, other body language

Related Works

- Teaching Introductory Programming Concepts through a Gesture-Based Interface
 - Dr. Lora Streeter
 - Used similar technology to achieve a different goal
- GitHub projects
 - University of North Texas's 2019 Hackathon
 - Created a sign language interpreter with Python
 - Kinect Sign Language project
 - Essentially a working version of what we want to achieve
 - PyKinect2
 - Library for Python that allows developers to easily create applications for Kinect

Deliverables

DESIGN DOCUMENT: CONTAINS A LIST OF EACH MAJOR HARDWARE AND SOFTWARE COMPONENT.

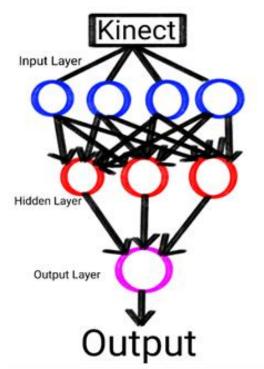
DATABASE SCHEME AND INITIAL DATA

WEB SITE CODE

AI, GATHERING/STORING OPTICAL DATA, DIGITAL IMAGE PROCESSING, ETC. CODE (PYTHON)

FINAL REPORT

Design – Requirements


- Connect to Kinect API through Python
- Convert Kinect sensory data into trainable datasets
- Allow for extensive training to improve accuracy
- Predefine different sign language letters, words, and phrases into identifiable outputs
- Allow for the user to sign to the Kinect and receive back the identified sign

Design – Use Cases, Design Goals

- Use Cases
 - User runs the application, allowing access to the Kinect camera
 - User can provide a sign and receive the correct answer
- Design Goals
 - Fast, efficient code
 - Easy access for modifying data sets and loading trained models

Design – High-Level Architecture

- Create Python file to connect to the Kinect API
 - Allows us to access body tracking and coordinate mapping information
- Create functions to convert coordinate data into trainable datasets and usable inputs for neural network
- Convert ASL letters A Z into outputs for the network
- Create the neural network model
 - Use PyTorch/TensorFlow to create model and training framework
 - Start training the network
- Add evaluation framework to test models for accuracy
- Optimize the network for the highest possible accuracy

Design – Risks

Risk	Risk Reduction
Inaccurate Sign Language	Extensive research of ASL
Inaccurate Neural Network	Train with many datasets in order to improve accuracy. Modify hyper-parameters and learning rate to find the most accurate model
Slow code	Write out algorithms and optimize for the best complexity time

Design – Tasks: Preparation Phase

- Equipment/Software Preparation
 - Understand how to work with the Kinect
 - Will determine what software(s) are necessary
- Make necessary installations
- If problems, we either get a replacement and/or change software(s)

Design – Tasks: Design Phase

- Design an application allowing the user to use the Kinect
 - Work with the Kinect API
- Develop library/database storing programmed ASL words/letters

Design – Tasks: Implementation Phase

- Implement first 3 letters together
 - Serves as the foundation of our implementation for remaining letters/phrases
 - Allows each person to know how the program works
- Complete remaining letters
 - Will be distributed among members
- Work on other ASL phrases
 - Numbers, time, people, etc.

Team Member	Set of Alphabet Letters
David Clairmont	D – H
Johnny Doan	I – M
Jack Gaither	N – R
Nick Hester	S – V
Sam Witucki	W – Z

Design – Tasks: Testing Phase

- Run the application
 - Check if application fulfills our expectations
- Test the accuracy of the Kinect for each letter
 - Different angles of the person's hand with respect to the Kinect
 - Different distances from the person to the Kinect

Design – Tasks: Documentation Phase

- Report results of application
 - Screenshots
 - Walkthrough of the application
- Record demonstration of the Kinect

Design – Task Schedule

Tasks Tasks	Dates
1. Equipment/Software Preparation.	
2. Test the Equipment. If there are issues, report and get necessary replacements.	
3. Design a Python application for the Kinect.	
4. Develop the library/database that holds all the ASL words/letters that have been programmed.	
5. Implement the first 3 letters of the alphabet and test the accuracy. Add the letters to the library.	
6. Test the application, ensuring that the library is properly connected and running properly. Make necessary adjustments if needed.	2/8-2/15
7. Each person implements their set of alphabet letters. Add letters to the library and test if the letters work properly.	2/15-3/1
8. Make necessary fixes if the letters aren't working correctly. If there are minimal to no fixes, then we take this time to brainstorm other terms to include.	3/1-3/8
9. Implement ASL numbers. Add them to the library and test if the letters work properly. Make necessary adjustments if needed.	3/8-3/22
10. Implement ASL terms relating to time. Add them to the library and test if the letters work properly. Make necessary adjustments if needed.	3/22-3/29
11. Implement ASL terms relating to people. Add them to the library and test if the letters work properly. Make necessary adjustments if needed.	3/29-4/5
12. Record and report the necessary information for the final document.	4/5-4/19
13. Make any final adjustments before submitting the project.	

Problem – Why We're Doing This?

- Difficulty
 - Difficult to learn, more difficult to learn it correctly
 - Practicing can be difficult
- Relevance in U.S. alone
 - 250,000 500,000 rely on ASL because of their disability
 - People who rely on ASL to communicate with disabled people