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Abstract 

The problem that we have discovered is that learning American Sign Language (ASL) is 

difficult, as it is with learning any language. Many different platforms help with teaching ASL, 

but through experience, online sign language teachers lack the ability to keep the student fully 

engaged and interested in the subject. Our objective is to develop a sign language teacher to 

improve the learning process by actually engaging with the student, with hopes of maintaining 

the desire to learn the language to its fullest extent. Overall, our objective is to make learning 

ASL easier and more fun.  

Our initial approach is to train an AI with an Xbox Kinect by having a reference sign each letter. 

We now decided to go with the same approach but use our web camera instead. The significance 

of the sign language interpreter is that it would help teach people how to better communicate 

with deaf/hard of hearing individuals. It would allow a person to expand their knowledge of the 

language and give them a special benefit in most situations.  

1.0  Problem  

The problem that many people face when they start to learn sign language is that it is difficult to 

do, and even more difficult to do correctly. Learning sign language is unique because it’s a 

completely visual language. This means that to practice sign language, you must either sign with 

someone else who knows sign language or record yourself signing and replay it. 

In the U.S. alone, around 250,000 – 500,000 people rely on sign language for their day-to-day 

communication because of their hearing disability [12]. When you factor in the number of people 

who then rely on sign language to communicate with people with a hearing disability, the 

number grows even larger. An application that provides a feasible and interactive way to learn 

sign language would allow an entire group of the U.S. population to effectively communicate in 

public settings. 

Without this application, sign language would remain a very difficult language to learn 

individually. To accurately learn sign language without forming bad habits, you would most 

likely have to join a class where a sign language educator could differentiate correct and 

incorrect gestures and provide feedback. Without something like this application to interpret sign 
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language, people who rely on it will inherently have a more difficult time doing everyday things 

that are specifically catered to people who do not have a hearing disability (i.e., audio-only drive-

through option at restaurants). 

2.0  Objective 

The objective of this project is to write software capable of correctly interpreting American Sign 

Language (ASL) using a web camera. 

3.0  Background  

3.1  Key Concepts  

Digital image processing is using a computer to analyze an image using algorithms [1][2]. This 

kind of processing can range from compression to enhancement and restoration. Some special 

image processing will likely be necessary to correctly pick out human bodies and their structure 

from the live image feeds. 

Once an image has been processed, we will have to use computer vision concepts to correctly 

interpret the image. Computer vision is a broad field that deals with how to get computers to 

interpret images the way humans do [3][4]. This would be considered a high-level understanding 

of the image. Various algorithms are used to try to achieve the broad range of image 

interpretation that humans currently possess. Often these algorithms are complicated and require 

AI to function correctly.  

AI Action recognition is the process by which an AI can recognize a specific action taking place 

in an image. It’s also considered a subset of computer vision. Usually, the actions the computer 

is trying to recognize are different human actions, like walking, running, talking, etc. Often this 

requires deep learning to work effectively along with a large amount of input data from many 

contexts to train the AI [5]. 

Once the computer vision process has been completed for a given image, it must be compared to 

a library of sign language gestures. We’ll be using American Sign Language specifically, 

although there are other sign languages [7]. It has unique signs for letters, numbers, and words 

all of which are formed using the hands, face, and other body language. While it is commonly 

used in English speaking countries, it has its own grammatical rules different from English 

grammar [6]. 

3.2  Related Work 

Dr. Lora Streeter worked on a very similar project for her dissertation [8]. She used Kinect along 

with several different algorithms to try to identify user gestures and translate them into 

instructions for a gesture-based programming language. Early in the paper, she mentions that an 

application of her project could be helping people with certain disabilities, even mentioning a 

theoretical program that could recognize sign language gestures, which is a major part of what 

this project is trying to achieve. Our project will involve building a system that will likely 

interpret images similar to how hers did, but instead of using it for programming, we will use it 

for sign language. 
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We were able to find a project on GitHub created by Harsh Gupta, Siddharth Oza, Ashish 

Sharma, and Manish Shukla that is essentially a working implementation of what this project 

hopes to achieve. They created a sign language interpreter using deep learning in a day for the 

University of North Texas’s 2019 Hackathon with Python and several other packages. The 

interpreter was capable of recognizing 44 different signs with high accuracy [9]. Our 

implementation will probably be similar, but we aim to have it recognize a larger number of 

signs. 

Another similar project is the Kinect Sign Language project created by Svilen Popov on GitHub. 

It’s a sign language translator that uses Kinect to get user input [10]. The project appears to be 

completed and working, but the description doesn’t explicitly state that it works. Whether it’s 

working or not, a Kinect-based sign language interpreter would be very useful to work off of for 

our project. 

PyKinect2, a project that enables its users to create applications for Kinect using Python [11], is 

more general than the others listed but will be helpful. Having a Python library build specifically 

for Kinect will help us make progress much faster than if we didn’t have it. 

4.0  Design 

4.1  Requirements, Use Cases, and Design Goals 

4.1.1  Requirements 

1. Connect the user’s web camera through Python 

2. Able to convert sensory data into Numpy datasets 

3. Must allow for extensive training of datasets in order to improve AI accuracy 

4. Must be able to predefine different sign language letters, words, and phrases into 

identifiable data for AI 

5. Allow for the user to sign to the web camera and receive back the identified sign 

4.1.2  Use Cases 

1. User runs the application, allowing access to the user’s web camera 

2. User can provide a sign and receive the correct interpreted letter, word, or phrase 

4.1.3  Design Goals 

1. Fast, efficient code 

2. Easy access for modifying set data and loading train model 
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4.2  Detailed Architecture 

4.2.1  Architecture 

We initially planned to use the Xbox Kinect to implement this project. To implement the sign 

language recognizer, we would start by creating a Python file that is able to connect to the Kinect 

API. By connecting to the Kinect API, we can access features such as Kinect body tracking and 

coordinate mapping. This will allow us to capture the left and right-hand joint coordinates from 

the device. From here, we will be able to convert the data into usable inputs for the neural 

network. At this point, we will have to implement the neural network using Python libraries such 

as TensorFlow and Numpy. The network will be trained with the relevant signs made in different 

positions and distances. The picture shows how the Kinect can be used to identify different hand 

symbols [13]:  

 

Live video feed is received from the Kinect and converted into input for the input layer. The 

input goes through hidden layers to distinguish identifiable traits and determine which possible 

alphabet sign it might be. The final layer is the output layer, where all possible outputs will 

reside. Upon receiving output in the output layer, a result will be sent back to the program 

representing the neural network’s determined alphabet letter. Below shows a diagram of how the 

data gets processed:  
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After encountering issues with the Kinect, we decided to switch to using our web camera. The 

structure of our program design would include the input from the web camera, the model that 

interprets the input, and the output to the screen. The input is a subsection of the total area of the 

webcam input cut into a 200x200 pixel image which is then manipulated to be ready to be 

interpreted. Without these changes to the image, it would not be able to be interpreted by the 

model. After the interpretation, the image to be displayed to the screen needs to have the output 

box inserted into the current frame, and then the interpreter’s prediction is printed onto that 

output box. Once this is complete, this frame is displayed to the user and then the process is 

repeated with each new frame from the webcam. 

 

4.2.2  Technologies Used 

For the hardware, we used our own basic web cameras to provide the images for the model to 

interpret. We ran this program on our own computers as opposed to a remote processing center. 

Some of us were also able to use GPUs that we owned, which greatly sped up the development 

process. For the software, we decided to write our project entirely in Python. We picked Python 

because of its ease of use and a large portion of developers who attempted projects like ours used 

this language. There are also a wide variety of packages to choose from, many of which are 

designed to handle specific tasks. The main two that we were interested in were PyTorch and 

Tensorflow, both of which are popular machine learning libraries in Python. 

 

Another one of the technologies we used was the OpenCV library for Python. The CV in 

OpenCV stands for “Computer Vision,” and the developers have explicitly designed it to be a 

library used for computer vision projects like ours. We used it primarily for capturing images 

from our web cameras and for making various changes to those images. There are also a few 

scripts in the program used for making large scale changes to our databases that took advantage 

of OpenCV’s ability to read and write images to the hard drive and used its image manipulation 

capabilities much more than what we would use for the interpreter. OpenCV was very easy to 

use and seemed well optimized for the role it filled in our project, which makes sense because 

it’s designed to be used almost exactly like we were using it.  

 

NumPy was another popular package we used. We initially installed it because it was required 

for OpenCV, although it is an important package used by many other libraries as well. It was 

essential for debugging our program, as many of the issues we ran into had to do with the size 

and shape of the tensors we were using, which would have been much more difficult to 

determine without this library.  

 

PyTorch was the library we settled on using for the machine learning part of our program. The 

main reason why we picked this over Tensorflow was that David and Jack had prior experience 

with PyTorch and had negative experiences with Tensorflow. It was used to both train and test 

the images, save our model after it had been trained, load it when used by the interpreter, 

interpret the images from our webcam in real time, and allowed us to tweak our model during 

development.  
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Pillow was another library we used for this project. It was used exclusively for image 

manipulation. The only place it’s been used is during the interpretation of a live image, where the 

image needs to be converted to the correct format before it can be interpreted. 

 

4.2.3  Interface Design 

Our interface was inspired by another sign language interpreter on Github [9] and showed us that 

we didn’t have to have a very complicated user interface to accomplish our task. The interface 

consists of a stationary input box outlined in blue towards the top left of the screen and a 

stationary black output box in the lower right corner of the screen. The prediction from the 

model is printed in white text inside of the output box. These elements are all layered on top of 

the frames coming from the user’s webcam. The input box itself is 200x200 pixels and is the 

only part of the webcam image used by the interpreter. The rest of the image is just so that the 

user can see him/herself and so that there is room for the output box. 200x200 pixels was chosen 

as the size for the input box based solely on the fact that the images used to train the model are 

also 200x200 pixels, and using an image of any other size would be less accurate than if we 

stuck to the original resolution. There were a few times we tried a different resolution, and it was 

always less accurate. Below shows our program interface: 

 

4.2.4  Initial Implementation with the Xbox Kinects & Virtual Environments 

The first thing we worked on was the Xbox Kinects. Only Samuel and Johnny were ever able to 

get ahold of a Kinect from the University of Arkansas, and the other group members had to have 

theirs shipped to them as they were living out of town. They never had a chance to work on the 

Kinects because we all decided to abandon them by the time their Kinects arrived. The first 

problem we ran into when working with the Kinects was one where it would flash a green light 

and refuse to give any video input. After some searching, we learned that one reason might be 

due to a lack of adequate power; however, this seemed unlikely since the adapter the Kinects 

used had a USB type B connector and another that plugged directly into an electrical outlet.  

 

After that, we started looking for special drivers for the Kinect as we thought this might be the 

problem. Initially, we tried an open-source driver that wasn’t created by Microsoft. The reason 

why we wanted to try this driver was due to its compatibility with Windows, Mac, and Linux. 
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This driver might have worked fine, but we had to compile it from its source code, which 

became too difficult as it required libraries with extremely complex installation instructions.  

 

We moved on to finding Microsoft’s original drivers for the device and were able to install them, 

which fixed the blinking green light but didn’t give us any input. After that, we installed 

Microsoft’s Kinect for Windows SDK, but the newest version was designed for Kinect version 2 

for the Xbox One, which we did not have. So, we found an older version and installed that and 

were finally able to get some input from the Kinects; however, it was inconsistent and seemed to 

require a restart if you wanted to start and stop a program that used the Kinects more than once. 

It was at this point that we decided to abandon the Kinects. 

 

Next, we started developing the Python virtual environment that we would use to encapsulate our 

project and make it more portable. We initially struggled with the creation and management of 

the virtual environment, eventually turning to Anaconda, a software used to help create Python 

virtual environments and manage their packages. This seemed to work well at first, but when we 

discovered that it stored environment packages in a location outside of where we had created the 

virtual environment, we decided to abandon this software and keep trying with the basic version 

that comes with Python.  

 

After some work, Samuel was able to get the required packages installed in a virtual environment 

created using the basic version that was correctly able to differentiate between the packages 

installed in the virtual environment and the base Python environment. He moved the virtual 

environment to another computer, and it didn’t work at all. He then asked his teammates to test 

this virtual environment to see if they had the same problem and they did. After some 

troubleshooting with no success, we decided to abandon Python virtual environments. 

 

4.2.5  Final Implementation with the Web Cameras 

In place of the Kinects, we opted to use basic web cameras as this would likely be easier for both 

the developers and the users to set up and use. However, we lost the extra information provided 

by the Kinect’s special sensors. In place of the Python virtual environment, we opted to use the 

Python base environment. This did not provide any extra portability or encapsulation; however, 

it would be easier on both the developers and users by avoiding any unexpected complications 

that might come with using a virtual environment. 

 

It was around this time that we started developing the app as it is now, as everything that we had 

worked on before had to be discarded. The first part of this new development was writing code to 

handle our webcam input, which we were quickly able to get running with OpenCV’s library and 

this tutorial [14]. With the basics of the webcam working, we were able to move on to creating a 

model. We found the Kaggle dataset [15], which contained 3,000 pictures for each letter in ASL 

as well as for special gestures “space” and “del.” It also contained an entry for “nothing,” which 

was the only extra entry that we would keep in the final model as “space” and “del” were 

removed. The “nothing” entry was not one that we had considered having in our dataset before, 
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but it made sense to include it as there would have to be an entry for the model when it 

determined that it wasn’t being shown any signs.  

 

After finding the Kaggle dataset, we looked online for tutorials to help us get started with 

training out model and found this one [16]. Using this tutorial, we were quickly able to get the 

code to start training a model using the Kaggle dataset. Initially, we included code to test the 

model to try to determine its accuracy; however, we would later remove this code as the only test 

that really mattered for this project was the interpretation of live video feed. As far as the 

structure of the model goes, we decided to use a pre-trained RESNET model as it would reduce 

the amount of time spent on designing the model and we would likely get better accuracy. After 

troubleshooting some issues with our training code, mostly having to do with making sure there 

were the correct number of classes (possible predictions for the model) and that the image 

tensors were the correct dimensions, we were able to produce our first model. Very soon after, 

we managed to get the model to interpret the images coming from our webcam; however, we 

hadn’t written the code to pick out a subsection for interpretation yet, so the model was 

interpreting the entire webcam frame. The accuracy was terrible at this point, but that was to be 

expected since the images coming from the webcam were nothing like the images the model had 

been trained for. 

 

It was at this time that another version of our model training software was created using Jupyter 

notebooks and remote GPUs for the training; however, the data it was using to train was a very 

different format than the data we used for our first version of the training software. We found 

that it was significantly more difficult to convert input from our webcam into a format the new 

model produced by this code could process, so we quickly abandoned this version of the training 

software. 

 

Work on cutting a subsection out of the webcam frame for processing by the model began 

immediately after we abandoned the new training software. Since we could arbitrarily pick any 

size image out of the webcam frame (even one bigger than the frame itself), we had a lot of 

freedom to make design decisions, but we decided to go the safe route and pick a subsection that 

was exactly the same size as the images used to train the model. We didn’t want to risk the 

model making any mistakes due to us feeding it images that were the wrong size. So, a 200x200 

subsection was picked towards the top left part of the webcam, which is a spot we thought would 

likely be less cluttered than the rest of the frame and allow for more accurate interpretation. This 

was quickly finished and for the first time we were able to start testing our model’s accuracy. We 

were disappointed with the results as the model was not very accurate, but it was interpreting a 

few signs correctly. Since our dataset seemed to have enough variation to produce a decent 

model, we decided to start making changes to our training code.  

 

While we had initially decided to use the RESNET model, we tried making our own custom 

model structure using this tutorial [17]. There were various issues that came up during the 

development of this model, mostly centered around having correct dimensions for the tensors 

being handled by the model, so after a lot of troubleshooting, we gave up and moved on, not 

wanting to waste time like we had on the Kinects and virtual environments. RESNET has 
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different versions of their RESNET models with higher and lower complexity, so we decided to 

try changing that. We switched to versions of RESNET with lower complexity due to the size of 

the first model produced from our training being around 92 MB. Lower complexity RESNET 

models are smaller than higher complexity models, and we also thought that our model was too 

sensitive and that having less detail would help produce better results. The models produced 

from training with lower complexity RESNETs were not any more accurate than our first model 

and were sometimes less accurate. At this point, we decided that we should stick to our original 

RESNET and try changing something else. 

 

The images in the Kaggle dataset were normal RGB color images, so we thought that reducing 

the complexity via reducing the number of colors might produce better results and eliminate 

inaccuracies based on color. We had used some functions for converting RGB images to 

monochrome earlier in development, but we hadn’t had any luck with conversions that picked a 

cutoff based on the sum of the RGB values as they never did a very good job differentiating 

between the background and the user’s hand. However, we found the Canny function, which 

would find high contrast areas of an image and draw white pixels on that region while leaving 

the rest of the image black. This did a much better job of picking out the user’s hand from the 

image; however, it would still outline other parts of the image. Even with these imperfections, 

we wrote a script to convert the entire dataset into a new dataset after passing the images through 

the Canny function. We trained a model with this dataset and added the Canny function to the 

subsection code, but we found that this new model was less accurate than our original model. 

The Canny function was abandoned at this point. 

 

We still thought that reducing the complexity of the Kaggle dataset images was the way to go, so 

instead we tried reducing the overall size of the images in the dataset to 100x100, making the 

images a quarter of the size they used to be. Just like before, we wrote a script to convert the 

entire Kaggle dataset to 100x100 versions of the original dataset; however, it was easier to write 

this script as it was essentially a small modification of the script we had written for the Canny 

conversion. Once this was done, we modified the subsection code to reduce its 200x200 image to 

100x100 and fed it into the new model we had trained with our low-resolution dataset. The 

accuracy was worse than with our original model. We didn’t use the low-resolution model after 

this point. 

 

A second attempt was made at creating a custom model, and we had more success with this one. 

We wanted to try making one that was more complicated than our first attempt at a custom 

model since it seemed like reducing complexity was not helping us when we tried it in any other 

parts of the project, so we followed this tutorial [18] to create our new custom model. There were 

some issues getting it running, once again relating to tensor dimensions, but this time we were 

able to get those fixed and were finally able to start training a new model. Probably about a 

second after we started running the training code with our new model framework, anyone who 

was running the model had their computer soft-locked due to extremely high memory and CPU 

usage. Everyone who tried running this model had to shut off their computer to stop the training. 

Our new model was abandoned at this point due to being unusable. 
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Finally, we decided that we should try training a model based exclusively on images of ourselves 

as the accuracy would probably be higher if the people testing the model were the same people in 

the training images. However, there was a problem: we would need a very large number of 

images for each sign if we were going to have decent results. We decided at least 1000 images 

was the best option. We wrote a script that allowed us to take many 200x200 images in a very 

short period of time. This script was more advanced than the previous two, which allowed the 

user to create the entire training dataset without having to restart the program, so a simple menu 

was created that worked by having the user press keys corresponding to the letter they wanted to 

create images for. The program also outputs the path the images are being saved to as well as the 

name and number of the image being saved. When the program would begin the process of 

writing images, it would first check to see if there were any images already written to that 

directory and would change the number in the image’s name accordingly if it found any images 

already there. If the directory for the new custom dataset had not yet been created, the program 

also created those directories. With this script, we were able to quickly create our own datasets. 

At first, we tried having one person train a model using only their images and only testing that 

model on themselves to be sure that this method was going to work. We didn’t get higher 

accuracy this way, so we initially thought that it would be pointless to combine our datasets as it 

would decrease accuracy by adding extra images that were not similar to the user or the user’s 

room. 

 

However, we remembered that the only time we had really had any success with training an 

accurate model was with the Kaggle dataset, so we thought that maybe combining our custom 

datasets with this one would yield a more accurate model. Combining the datasets was not as 

simple as copying both sets of images into a new dataset, many of the images had the same 

names and so would overwrite each other. Also, since there would be around 4,000 – 5,000 

images per letter once the datasets were combined, renaming the images manually was not 

feasible. We then created another script to combine the datasets. It worked by creating a new 

directory for the combined datasets and then copying one dataset into the new directory, 

counting the number of images for each letter as it wrote the images. Once the first dataset had 

been copied, the second dataset would also be copied into the combined dataset directory, 

however the images for each letter would be renamed using the number of images counted when 

the first dataset had been copied. Soon we had our combined dataset and used it to train a new 

model. We should also note here that we simplified our training code using the official 

documentation from PyTorch [19] to skip any automated testing as the only functionality we 

cared about was how well it performed when interpreting live footage. Our new model was 

significantly more accurate than any of our previous models, and it’s the model we used when 

creating our demo. A few more things were tried to make our model more accurate, like training 

for a longer or shorter amount of time, but for the most part additional development stopped after 

the creation of our demo model. The letters I, J, R, and V were not able to be correctly 

interpreted, but there wasn’t enough time left for us to keep working on the model at that point. 
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Overall, the implementation of this project took about 3 months during which we tried and 

abandoned a few different technologies, and once we had a working model, we tried several 

different things to increase its accuracy.  

 

4.2.6  Lessons Learned 
Using old and unsupported proprietary software or hardware has a higher chance in running into 

issues. It majorly affected our progress, and there were not enough helpful and relevant resources 

to help solve our issue. Also, developing an app on something that is essentially dying out is not 

good for the longevity of your program, as users will have to acquire something that is limited in 

numbers and probably hard to find. Using hardware or software that is proprietary, old, or 

unsupported will also likely create more security vulnerabilities than if you had used something 

that had none of these qualities. 

 

Focusing on peripheral features before critical ones isn’t always a bad thing as long as you don’t 

run into many problems and development goes well for both features; however, if you start 

having problems with either, you’ll find that you quickly start to run out of time. Getting tunnel 

vision like we did with the virtual environments just takes away time that we could have used to 

create a more accurate model. To help understand the impact that this can have on a project, we 

would probably have another week and a half to try to further improve the accuracy of our model 

if we had skipped the virtual environment entirely. 

 

4.2.7  Potential Impact 
Creating a successful sign language interpreter via web camera will provide better accessibility 

to sign language education. To efficiently learn sign language, it’s best to do it in-person. These 

opportunities are usually offered through universities and community colleges or hosted by deaf 

communities; however, these usually cost a fee up to $100 per session, which not everyone can 

afford or travel to these locations. Especially with current COVID restrictions, it limits 

accessibility even further.  

In a broader sense, this project has an impact on the capabilities of computer vision, bringing 

more opportunities for businesses and the tech industry.  

 

4.2.8  Future Works 

This project mainly focuses on gesture recognition, and it can definitely extend to motion 

recognition, allowing an endless possibility for ASL words and phrases. Being able to implement 

other words and phrases can help the user better carry a conversation. Even extending this to 

other types of sign language such as British, Chinese, French, etc. would target a larger audience. 

Sign language can be difficult to learn because each gesture has a specific hand position that can 

make an individual confused between words, phrases, and letters (i.e., signing A, E, and S). We 

can potentially add a tutorial section into our program so the user can know the specific finger 

position and hand posture. The tutorial can include a graphic hand model demonstrating the 

signed letter or word, and the user can manipulate the hand model, ensuring better accuracy and 

adjustments.  
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4.3  Risks 

Risk Risk Reduction 

Inaccurate Sign Language Extensive research of ASL 

Inaccurate Neural Network Train with many datasets in order to improve accuracy 

Slow code Write out algorithms and optimize for the best complexity time 

4.4  Tasks 

Our tasks are broken down into phases based on engineering design principles: Preparation, 

Design, Implementation, Testing, and Documentation Phases. Below is the list of tasks based on 

our final design approach:  

4.4.1  Preparation Phase 

1. Understand how to collect data from our web camera. To have a general basis for our 

approach, we will reference some of the related works mentioned before. 

2. Install the necessary software(s), which mainly consist of Python libraries. 

4.4.2  Design Phase 

1. Develop the user interface where the user starts signing to the camera, and the letter gets 

interpreted. 

1.1 The main goal of this application is to get most of the alphabet interpreted, and if we 

have enough time, then we can start interpreting other categories of ASL words/phrases. 

2. Develop a dataset for each letter in the alphabet. 

4.4.3  Implementation Phase 

1. Implement the first three letters of the alphabet (A, B, C) along with the letters J and Z. 

1.1 This will help build a foundation for the remaining letters. Letters J and Z are included 

because, unlike the other letters, they require motion. 

2. Complete the remaining letters of the alphabet. 

2.1 The alphabet will either be split to each team member or be split to 2-3 members while 

the remaining will work on the application. A sample distribution is shown below: 

Team Member Set of Alphabet 

Letters 

David Clairmont D – G 

Johnny Doan H – L 

Jack Gaither M – P 

Nick Hester Q – U 

Sam Witucki V – Y 

3. Once we complete the alphabet, we can then extend to other categories of sign language 

(i.e., numbers, time, people, questions, etc.) if we have enough time. 
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4.4.4  Testing Phase 

1. Run the application and check if it fulfills our objective and expectations. 

2. Test to see how accurate the web camera can depict each letter of the alphabet. 

2.1 Testing will include different angles of the person’s hand with respect to the web 

camera. 

4.4.5  Documentation Phase 

1. Report the results of our application. Screenshots and a video walking through the 

application will be provided so the user understands how the program works. 

2. Record a demonstration of the program being able to read the person signing. 

4.5  Schedule 

Below indicates our proposed timeline for each task listed in section 4.4: 

Tasks Dates Person(s) 

1. Software preparation & Determining necessary equipment 1/11 – 1/22 All 

2. Requesting equipment & Waiting for responses/updates 1/25 – 2/5 All 

3. Setting up Python application and virtual environment. 1/25 – 2/5 Samuel 

4. Testing Python virtual environment and compatibility with the 

Kinect (for those who had the Kinects). 
2/8 – 2/12 

Samuel, 

Johnny 

5. Reevaluating project and change approach 2/15 – 2/19 All 

6. Work on Python application that collects data from MP4s or 

web cameras. Create a user interface. 
2/22 – 3/5 All 

7. Work together on interpreting the letters A, B, C, J, & Z 3/8 – 3/12 All 

8.1. Interpret letters D – G & Test the letters 3/15 – 3/19 David 

8.2. Interpret letters H – L & Test the letters 3/15 – 3/19 Johnny 

8.3. Interpret letters M – P & Test the letters 3/15 – 3/19 Jack 

8.4. Interpret letters Q – U & Test the letters 3/15 – 3/19 Nicholas 

8.5. Interpret letters V – Y & Test the letters 3/15 – 3/19 Samuel 

9. Improve the model to increase accuracy. 3/22 – 4/2 Samuel 

10.1. Record video demonstrating the project. 4/5 – 4/16 Samuel 

10.2. Provide instructions to run the project. 4/5 – 4/16 Samuel 

10.3. Documentation of project results (website, slides, poster). 4/5 – 4/16 All 

11. Final adjustments before submitting project. 4/19 – 4/29 All 

4.6  Deliverables 

• Design Document:  Contains a listing of each major software component. 
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• Dataset:  The dataset with all of the signed letters. 

• Python code for training the AI, gathering and storing optical data, digital image 

processing, etc.  

• Video demonstrating the program interpreting the working letters 

• Final Report 

5.0  Key Personnel 

David Clairmont – Clairmont is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses in Programming Foundations I & II, Programming Paradigms, Software Engineering, 

and Database Management Systems. He is currently an undergraduate research assistant for Dr. 

Qinghua Li. Clairmont will be responsible for creating the Python files to connect to the Kinect 

API and programming some letters of the alphabet. 

Johnny Doan – Doan is a senior Computer Engineering major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses in Programming Foundations I & II, Programming Paradigms, Database Management 

Systems, Software Engineering, and Algorithms. Doan will utilize his leadership experience 

from student organizations to keep track of each member’s progress. He will also use his class 

experiences to work on the set of alphabets and the application that connects the program to the 

Kinect. 

Jack Gaither – Gaither is a senior Computer Science major in the Computer Science and 

Department at the University of Arkansas. He has completed relevant courses in Programming 

Foundations I & II, Programming Paradigms, Database Management, Software Engineering, 

Cryptography. He has experience with running various HPC applications, image processing, 

action recognition/segmentation, and teaching python tutorials. Gaither has also interned for the 

past three years with the Texas Advanced Computing Center, starting as an REU student and 

then mentoring for the past two years for various student programs. He now works with Dr. Luu 

in the CVIU lab on campus doing action recognition/segmentation. He will be responsible for 

working on the set of alphabets and testing each of the letters. 

Nick Hester – Hester is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses which include Programming Foundations I & II, Programming Paradigms, Database 

Management Systems, and Software Engineering. He has experience creating a website that will 

come in handy when creating the website for this class. Hester will be the main reference for the 

initial signing training. Hester is capable of signing the full alphabet along with the simple 

phrases that will be used to train the AI and will work on the testing portion of the project along 

with programming the set of alphabets. 

Sam Witucki – Witucki is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed 

Programming Foundations I & II, Programming Paradigms, Software Engineering, and Database 

Management Systems. He is currently employed as an IT/Engineering Intern, writing software at 

J.B. Hunt. He will be responsible for writing some of the Python code for this project as well as 

providing an extra reference for the sign language interpreter.  
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6.0  Facilities and Equipment 

For this project, the main equipment we initially used was the Xbox Kinect. This would’ve acted 

as our main medium for our image capture. We ended up utilizing a GPU machine that can be 

accessed via SSH for our initial image processing and model training.  
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