
In-House Packing Engine for MARSHALLTOWN

University of Arkansas – CSCE Department
Capstone II – Final Report – Fall 2021

In-House Packing Engine for MARSHALLTOWN

Carey Lawrence, Akhila Parvathaneni, and Evelyn Smith

Abstract
In this paper we outline the in-house packing engine for MARSHALLTOWN to improve
shipping costs. This packing engine will optimize packaging smaller items in the most
appropriate larger box as well as the stacking of all items on a palette. This packing engine will
take into account individual box dimensions, weight, space limitations from the client and
shipping company and the vast array of potential solutions. In order to achieve this, we are
starting with a space optimization program and test databases provided by MARSHALLTOWN.

We started with the front-end development to get the user interface working correctly. The next
step was to take each of the additional limitations of packing. Moving this software in-house
provides many benefits. The first benefit of our project is creating a palette optimization that will
take into account weight instead of just box dimensions. Additionally, MARSHALLTOWN will
now have the ability to adapt the program as needed and add new features as new limitations
present themselves. Lastly, it helps pack the same amount of area more efficiently and therefore
reduce overall shipping costs.

1.0 Problem

MARSHALLTOWN needs a packing engine that provides the warehouse workers the best
options for packing items requested by the client. Before going any further, let us define what we
mean by “packing engine”. For MARSHALLTOWN the packing engine does two things. The
first problem is finding the best way to pack the smaller items into a larger, more portable box in
order to save money on shipping costs, but not too large of a box that consumes more airspace
than needed. The second half of the problem is taking the larger packed boxes and larger items in
general to pack them onto a palate of which has size limitations specified on the client’s end.

As of now, they have a packing engine already in place. The issue with this is that the service is
outsourced from another company. Meaning that they are not really sure how the program is
working. MARSHALLTOWN would like to move the packing engine in house to have a better
idea of how the code is working, possibly make it more efficient and to add on other
requirements as needed.

2.0 Objective
This project has multiple objectives. The first being to create a packing engine that takes smaller
items and the different available box sizes to find the most efficient way to pack the smaller

1

In-House Packing Engine for MARSHALLTOWN

items. In this case efficient takes on the meaning of containing the least amount of open space in
a box. We want to fill the box as full as possible with the items given and choose the appropriate
box to pack in. The next objective of this project is to efficiently palletize all of the requested
products within the height and weight limitations of the client and also the delivery service. This
is done to minimize additional fees from both the client and delivery service as well as take
down the entire cost of delivery by taking up less space in general.

3.0 Background

3.1 Key Concepts

Some key technologies that are relevant to this project are C#, .NET Standard, Blazor, and SQL.
C# is an object-oriented language developed by Microsoft that has similarities to Java. C#
enables users to develop Web Applications. The .NET Standard framework is multi-platform
which allows for other languages such as C# to use it. .NET can provide services specific to
building the application such as accessing the time. There is another tool known as ASP.NET
that allows the user to develop web programs. We will be using .NET as the backend for our
project.

For the front-end, we will be using Blazor which is an open-source framework that allows the
user to build interactive web applications using C#. The name itself combines “Browser” and
“Razor” and Blazor supports the performance of the client-side views. More about how Blazor is
used specifically for our project can be found in a later section of this report.

Another language that is relevant to our project is SQL. SQL or Structured-Query Language is
language used in programming to establish communication with the database. The SQL
statements are used to obtain specific pieces of data from the database using certain conditions.
SQL is also used to update or modify the database depending on the situation. In general for this
project we will be connecting to the SQL database using linq2db library from .NET to evaluate
data.

4.0 Design

4.1 Requirements and/or Use Cases and/or Design Goals

As mentioned, there are two different jobs that this application will serve. The first is selecting
appropriately sized boxes to pack mixed cases and how said boxes will be packed. The second
will be to determine the most efficient way to pack a pallet given its dimensions and what’s to be
packed on said pallet. The front-end requirement for this project will be to create an interface
that works intuitively as possible to provide the user with an easy way to enter any items, boxes,
or dimensions that will restrict the order.

Because of the products that MARSHALLTOWN produces, many additional requirements will
factor into the algorithm we will be designing. At MARSHALLTOWN, many products ship in
case quantities or are mixed cases with many different items inside. A requirement of this
algorithm is to prioritize heaviest cases at the bottom. With MARSHALLTOWN, the method of

2

In-House Packing Engine for MARSHALLTOWN

weight stacking used is noted as the ABC method where and A cannot be stacked on a B or C
class item, a B item can be stacked on an A but not a C, and finally, C class items can be stacked
atop any of the classes. Additionally, many products must be shipped following a certain
orientation, therefore the algorithm may not be allowed to alter the orientation of certain items,
even at the cost of efficiency. MARSHALLTOWN products such as industrial rakes have
abnormal, triangle-shaped boxes and are packed with an exposed handle with a length of around
60”. A final requirement given to us by MARSHALLTOWN was to try to pack items with items
of their kind as much as possible to reduce confusion with production workers and minimize the
time spent searching for different items. These requirements cause great difficulty when packing
and are what makes this project with MARSHALLTOWN so unique.

4.2 Detailed Architecture

For the front-end design of our webapp, we plan to use the Blazor framework. Blazor is an
extension of the .NET developer platform that allows for the creation of Razor components.
These components then allow for the integration of HTML and C# code to create web pages.
Unlike MVC apps, Blazor does not follow a request/response model, but instead centers around
client-side UI logic where the logic can then make further calls to the .NET Standard backend
[1]. This UI is meant to be intuitive to enter data into, and offer clear explanations of how the
results of a call to the packing algorithm should be interpreted. This front-end utilizes a
JavaScript library called THREE.js to perform the modeling and display the items in the order
they’re packed for an easier visualization of the packing process. As suggested, THREE.js allows
for us to produce 3-d objects and map them to a defined view as it interfaces with WebGL to
provide an easier development process than simply utilizing WebGL.

3

In-House Packing Engine for MARSHALLTOWN

This project will utilize a sql database of sample data used at MARSHALLTOWN. To access,
manipulate, and create the stored procedures for the database, we will be using SQL Server
Express as our software of choice.

Our connector to the SQL database will utilize the .NET Library linq2db to send and retrieve the
data to and from our SQL database. The data acquired through this method will be used to
validate items and box sizes, as well as to retrieve information regarding specific customers’
needs for pallet packing.

The final large component of our project is the packing algorithm. While we have been given a
starting C# solution for this project, we will find the majority of the changes in this project being
made in this part of our work. The packing algorithm is what this project largely revolves
around, with the end goal of this specific component being to accurately compute the most cost
efficient way to pack boxes and pallets. This component will communicate with our Blazor
project to take in the data regarding what is to be packed, and then to return a model of how
those items should be packed.

4

In-House Packing Engine for MARSHALLTOWN

4.3 Tasks

As this is still in the earliest phases of development, the tasks listed are likely more general than
what will end up becoming of them as we progress.

1. Determine and create script for SQL Database creation
2. Learning new software and frameworks
3. Testing current project and determining any additional shortcomings
4. Adjusting database schema to fit requirements
5. Creating and inserting sample set(s)
6. Familiarization with algorithm
7. Adjusting the algorithm for heaviest at the bottom
8. Adjusting the algorithm to work with items that cannot be reoriented
9. Making packing algorithm work for both pallet packing, and box packing...
10. UI and visualization rework
11. Edge case testing application/Catchup

a. Debugging minor issue with items that can’t be reoriented
12. Final deliverables (Paper, website, poster, etc.)

4.4 Schedule

Tasks Dates

1. Determine and create script for SQL Database creation 9/13-9/22

2. Learning new software and frameworks

3. Testing current project and determining any additional shortcomings

4. Adjusting database schema to fit requirements

5. Creating and inserting sample set(s)

9/13-9/22

9/22-10/1

10/1-10/4

10/4-10/8

6. Familiarization with algorithm 10/8-10/15

7. Adjusting the algorithm for heaviest at the bottom 10/15-10/22

8. Adjusting the algorithm to work with items that cannot be reoriented

9. Making packing algorithm work for both pallet packing, and box packing...

10. UI and visualization rework

11. Edge case testing application/Catchup

12. Final deliverables (Paper, website, poster, etc.)

10/22-10/29

11/5-11/12

11/12-11/19

11/19-12/3

12/3-12/8

5

In-House Packing Engine for MARSHALLTOWN

4.5 Deliverables

For this project, we will have two main coded deliverables:

1. C# Pallet Packing solution containing 4 projects…
a. Blazor front-end with .html layouts, .razor components, startup settings, and other

classes used directly from the Blazor front-end
b. SQL Database connector using .NET’s linq2db library with methods to get and

map the data returned from our SQL calls
c. Packing Algorithm project with all necessary C# files

2. SQL Database scripts
a. Script for setting up the database we will be working with
b. Script for populating the database
c. Script(s) for creating any stored procedures we may use

6

In-House Packing Engine for MARSHALLTOWN

4.5.1 Pallet Packing C# Solution

With the starter project we were given, some of the design decisions regarding the packing
algorithm had already been set for us. We were given a basic web interface that utilizes the
EB-AFIT algorithm developed by Erhan Baltacioglu of the US Airforce in 2001. This algorithm
essentially takes in a list of items with dimension attributes, as well as a container, then outputs
an ordered pack list of the most efficient method of packing said container. That list is then taken
in by the THREE.js component of the front-end to provide an incrementable, 3-d representation
of the packing result that can be used on the production floor. The final major part of the C#
Solution we implemented was the SQL connector that populates the information from the
database, including the possible container sizes and the order to be processed.

4.5.1.1 SQL Connector

With the Linq2Sql library we implemented in this project, we were easily able to achieve
information retrieval for the project. To start, we had to create a .tt file with the connection
information regarding our database. With Linq2Sql, all we then had to do was save the file and a
C# model of our database was generated along with all its tables and attributes.

With this model generated, we then had to create a class that would interface with outside C#
packages and actually populate the item and container models. This class included various
methods, including GetContainers() which retrieves and maps the container information;
GetItemsToPack() which returns the items in a given order, grouped by item name; and
GroupItems() which groups the item by name and adjusts their quantity as needed per grouped
item. With this implemented, we have all the information required from the database to start
packing pallets.

7

In-House Packing Engine for MARSHALLTOWN

4.5.1.2 Packing Algorithm

The Packing algorithm itself is where the bulk of the project work was performed. As mentioned,
the EB-AFIT algorithm is very accurate at packing containers and maximizing the space. It
doesn’t, however, take into account any real-life conditions that a manufacturer might require
when shipping items. The base algorithm essentially takes a layer-by-layer approach to packing.
It tries to fill as flat and efficient a layer as possible, checking different variations of how the
items may be placed to maximize the efficiency. Then, if a layer is not flat, it recurses through
the gaps in an attempt to fill them and maximize those pockets as best as possible. It does this
across 6 possible container variants and chooses the one deemed most efficient by the program at
the end to pack. It then uses that best variant to call the Report method to run through the
packing iterations again using only the most efficient container orientation to recalculate and do
the actual packing of the layers, before returning the list of items in packed order with their
appropriate locations set.

Grouping Items
To group our items into complete layers as best as possible, we didn’t end up having to change
the EB-AFIT algorithm itself, but rather how the algorithm was entered. To do so, we utilized a
method named LayerItems that takes in one item type at a time. It then parses this item type into
a list of that item that is the length of the total quantity of that item in the current order. At this
point, that list is sent into our EB-AFIT algorithm to return our packing results for that specific
item. We can then perform a little math on the packing result to find out if a full layer was
packed and if there were any leftover items that didn’t constitute a full layer. If we were able to
create a perfect layer of those items, we group them as a layer of that item type and then return
any leftover items. While initially this method works, as we proceeded with the project we found
there were some shortcomings with the method as a layer of items with weight class C will
always be required to be atop or next to items of class A or B, meaning there is a large possibility
for that layer to be placed somewhere that the algorithm thinks one item of full size is possible
but isn’t when broken down. Pictured below is a layer of items that has been grouped together as
described. The layer consists of the individual boxes shown atop the conglomerate layer.

8

In-House Packing Engine for MARSHALLTOWN

Fixed Item Orientation
To tackle the issue of fixed item orientation, we had to start by altering the initial schema of the
database to include a column of the type ‘bit’ specifying if the item can be packed flagpole. We
then had to alter the attributes of the item class within the C# project to add a boolean that will be
mapped to the corresponding bit of the database’s table. At this point, it was a matter of breaking
down the algorithm to find out where it is that we should determine if an item can be packed
following a certain orientation or not. The solution to this ended up being in the FindBox method
where we cycle through the array of items to find if and what orientation of the current item will
fit within the given area by calling AnalyzeBox to find the best fitting orientation. Unintuitively
enough, the coordinate plane system used during visualization regards what would truly be the z
axis as the y axis, thus causing some confusion and issue during the implementation when trying
to restrict an item’s length from being aligned along what would otherwise be considered the z
axis.

Note: Boxes with black outline can be packed vertically, boxes with white outlines cannot

Pictured above is an example of how restricting the orientation of one item (the large blue box)
can totally restructure an entire packing solution. On the left, the box is allowed to be placed
with its length vertical, however on the right we have altered the dataset so that option is no
longer possible.

A B C Item Weighting
The ABC item weighting turned out to be a more in-depth change than those mentioned. With
this method of item weighting, we had to start by assigning a weight of A, B, or C to every item
within the database by altering the schema to include a column named “CharWeight”. Following
this, we had to update the item model to have a partner attribute for that value to be mapped to,
which we called “WeightDef”. From there, the method we pursued for implementation revolved
around editing the contents of the EB-AFIT algorithm. To do this, on entering the initialize
function within the algorithm, we split the _itemsToPack List that contains the full list of every
individual item to pack into three arrays: _itemsToPackA, _itemsToPackB, and _itemsToPackC.
These lists are, as named, all of the A, B, and C items in the order. We also retained a copy of
the original _itemsToPack List as well as of the lengths of each of the Lists we created. We then
set _itemsToPack equal to A, B, or C, with that priority order, depending on whether the

9

In-House Packing Engine for MARSHALLTOWN

respective List has any members belonging to it. Because of the design of the EB_AFIT
algorithm, all of these variables were of the private access modifier, meaning any of the methods
within this algorithm could access them, thus making this process a bit more difficult than just
splitting up that array and packing each one. In order to achieve a correct implementation with
all of these private variables, we had to go through the entirety of the algorithm and add various
checks and triggers so that if the _itemsToPack list was being looped through anywhere, it must
reassign it the the appropriate A, B, or C list after finishing a number of iterations equal to the
length of the A, B, or C list, as well as preserve the integrity of any changes made to the contents
of the A, B, and C lists. In other places, such as ExecuteIterations and Report, the entirety of
both lists are reset to start from scratch with dimension checking. In these areas, we essentially
had to re-instantiate each list based on the copy of _itemsToPack we created early on. Given the
size and complexity of the EB-AFIT algorithm, this process ended up being quite tedious and
took a significant amount of time to complete as any incorrect alteration to the algorithm would
cause items to be unpacked, infinite loops, or just wouldn’t pack correctly.

Note: Red boxes are class A, blue boxes are class B, and green boxes are class C

As pictured above are instances of container packing where everything is treated with the same
weight, versus the case where everything is weighted according to the ABC method. While the
unweighted method is definitely more space saving, it should be noted that the algorithm created
the base using only the smallest items, then stacked the three largest boxes atop them in a way
that would likely damage MARSHALLTOWN goods. On the right, one might speculate that
there is room for improvement by stacking C weighted (green) boxes along the edge atop the
blue boxes, however this would violate the rules set in place with container packing where we
are specifically required to never layer a B box above a C box.

Container Packing
The objective of the container packing portion of this project was to pack smaller items into a
larger box for easier shipping purposes. This should work in much the same way that the
palletizing portion of the algorithm did. However, the main difference was that we needed to find
an optimal packing solution and pick the container thereafter instead of having predetermined
packing dimensions. The container packing utilizes the EB-AFIT algorithm just in an opposite
manner. The possible small item configuration is tested within the limitations of each of the
possible larger container sizes that MARSHALLTOWN has at their disposal. The algorithm

10

In-House Packing Engine for MARSHALLTOWN

should then choose which larger container has the least amount of air space within the box with
all items packed in the most space-saving configuration. The container with the least amount of
air space is then chosen and that box goes into the database to be properly palletized with the rest
of the order.

It is important to note that this portion of the project is not fully complete at this time.

4.5.1.3 Blazor with THREE.js Front-end

The basic front-end is quite simple and consists firstly of a text box where the user can input the
desired customer order number to retrieve the items on the order from the database via the “Get
Items for Order'' button. Accompanying that is the button that signals for the work to begin,
entitled simply “Pack Pallets”.

The following few tiles are expandable and display various information regarding the order and
the algorithm. When expanded, Items shows all information regarding the items on the current
order, including Name, Length, Width, Height, Qty, Weight, and if the item can be packed
vertically (also considered flagpole). Containers tile displays information about the various boxes
MARSHALLTOWN uses to pack smaller items inside of and shows the boxes’ Name, Length,
Width, Height, and Volume. These containers are used for the items to containers part of the
packing problem posed to us and having their information on hand is valuable on the production
floor. The next tile, Pack Results, is more useful to developers. It has information about the
algorithm used (in our case, always the EB-AFIT algorithm), the pack time in ms, the percentage
of the container used, and how many items we were and weren’t able to pack.

11

In-House Packing Engine for MARSHALLTOWN

On packing the pallets, not only is information populated into the Pack Results tab, but a new
view created using THREE.js appears with a visualization of the pallet’s area with no items
packed in it. At this point, the user may utilize the “Show Next” and “Show Previous” buttons to
step through the packing of the pallet/container and visualize how the pallet should be packed.
These buttons interact with the JavaScript via JS Interop to create and push THREE.js mesh
cubes into the render and display them depending on their assigned coordinates as returned from
the algorithm.

12

In-House Packing Engine for MARSHALLTOWN

This final image is a completely packed order. Something of note is the coloration of the meshes
and why they differ. The items’ meshes are assigned colors based on the item’s attributes. A red
mesh means the item is of weight class A. A blue mesh means the item is of weight class B.
Finally, a green mesh means the item is of weight class C. Additionally, these meshes have been
assigned wireframes that differ based on whether the item can be oriented vertically or not. For
an item where that case is allowed, we set the wireframe to black, otherwise it’s set to white, as
pictured above.

4.5.2 Database Structure

The database scripting language we used for this project was SQL, as per standard within
MARSHALLTOWN. To start our database, we were given a restore file which we used on a
local database instance to ensure everything was working with what they gave us. We then used a
rather large dataset given to us from MARSHALLTOWN that contained the entirety of one large
order to populate our ItemsToPalletize table. While we were given seven total tables to work
with, only three are required for our project to work, with only two being used in the current
iteration of the project. These tables were ItemsToPalletize, which contained all of the
information regarding the items on an order and BoxData, which contained all of the information
regarding the sizes of containers we had available and could be used for packing items in.
Pictured below are the schemas for said tables.

13

In-House Packing Engine for MARSHALLTOWN

After getting the database working locally, we then deployed using Microsoft Azure to provide
the whole team access to the server and tables needed to make progress on the project.

5.0 Future Work
In the future, we would like to work on building onto the code for abnormal items. Items that are
triangular or any other non-cuboid forms may need to be placed on the top. This way those that
are already in a cuboid form may maximize efficiency in the bottom to fit in as many boxes as
possible. Another thing we would like to work on is refining the packing process so that it is
more efficient. There are some items that seem to be floating in air, which is not a realistic
solution to this packing engine. We are going to explore ways to go directly from the packing
containers to the packing pallets along with the containers. We would also like to make the UI
more clear so that it would be easier to identify which boxes are being packed. Perhaps we could
have the box selected to be highlighted so the user can easily make out where that item is located
in the packing engine. We need to finish container packing as it is important to choose the
container with less air space to be inserted into the database in order to be appropriately
palletized with the other boxes. There are still some minor layering issues we need to modify and
make sure efficiency is maximized.

14

In-House Packing Engine for MARSHALLTOWN

Seemingly floating boxes, B item C item placement seems like it should pack up the edge of the
pallet, however it doesn’t because that would layer a B item above a C item.

6.0 Key Personnel
Evelyn Smith – Smith is a senior Computer Science major in the Computer Science and
Computer Engineering Department with a minor in Mathematics at the University of Arkansas.
She has taken Database Management, Programming Paradigms, Software Engineering, and is
currently enrolled in Algorithms. Smith has been working with MARSHALLTOWN since June
of 2021 and has had the opportunity to work with all of the frameworks and libraries used in this
project in a professional setting. Responsible for SQL Database and Blazor UI.

Carey Lawrence – Lawrence is a senior Computer Science major in the Computer Science and
Computer Engineering Department with a minor in Mathematics at the University of Arkansas.
She has completed relevant courses including: Algorithms, Database Management, Programming
Paradigms, and Software Engineering. Additionally, Lawrence has done research into machine
learning as well as full-stack development for multiple web based applications through Credera
Consulting. Responsible for developing our algorithm to work with pallet restrictions.

Akhila Parvathaneni – Parvathaneni is a senior Computer Science major in the Computer
Science and Computer Engineering Department at the University of Arkansas. Parvathaneni has
already obtained a Bachelor Degree in Biology and a minor in Mathematics. She has completed
relevant courses including: Artificial Intelligence, Algorithms, Software Engineering, and
Programming Paradigms. She is familiar and has experience with iOS/Android Development
and Full-Stack development. Responsible for developing our algorithm to work with mixed case
restrictions.

15

In-House Packing Engine for MARSHALLTOWN

Craig Wall, Industry champion – Wall did not provide us with a short biography by the time
that this was due.

Jeff Schnieder, Industry champion/IT Director – Schnieder has been developing software
professionally for 20 years and previously owned his own company for 8 years before joining
MARSHALLTOWN in 2010. Schnieder manages the organization's development and systems
teams. We have developed many novel software products for our own use and in 2014 started
selling some to other distributors/manufacturers. Since then we have productized a SDK that
makes interaction between C# software and ERP systems, mainly Microsoft Dynamics AX based
systems, much easier to write. Now we have a software company component in our department
and we have many customers in the US and Europe.

1.0 Facilities and Equipment
The facilities and equipment used for our project as mentioned earlier involve the C# code with
the packing algorithm, SQL Database connector, and Blazor for the front end.

7.0 References
[1] Architecture comparison of ASP.NET Web Forms and Blazor,
https://docs.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/architectu
re-comparison

[2] linq2db - Introduction, https://github.com/linq2db/linq2db/wiki/Introduction

[3] Baltacioglu, Erhan, "The Distributer's Three-Dimensional Pallet-Packing Problem: A Human
Intelligence-Based Heuristic Approach" (2001). Theses and Dissertations. 4563.

https://scholar.afit.edu/etd/4563

[4]William Knechtel, 3D Container Packing in C#, https://github.com/wknechtel/3d-bin-pack/

16

https://docs.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/architecture-comparison
https://docs.microsoft.com/en-us/dotnet/architecture/blazor-for-web-forms-developers/architecture-comparison
https://github.com/linq2db/linq2db/wiki/Introduction

