
In-House Packing Engine for
MARSHALLTOWN

MEET THE TEAM

Evelyn Smith - Project Lead
Computer Science Major
with a Mathematic Minor

Akhila Parvathaneni - Team Member
Computer Science Major

with a Bachelor’s in Biology

Carey Lawrence - Team Member
Computer Science Major
with a Mathematic Minor

Key Personnel
● Craig Wall

○ Director of Arkansas branch IT

● Jeff Schneider:

○ Director of MARSHALLTOWN IT across all branches

● Steve Smith

○ Main source at MARSHALLTOWN for any SQL scripts and database management

Problem

Choosing
and packing
mixed case

boxes

Palletizing
boxes

efficiently

Objectives

Bring the packing
engine software

in house

Efficiently pack
mixed cases

Optimize
palletization of

mixed cases and
other boxes

Limitations with
items that can be
packed together

Choosing the
correct box for
packing mixed

cases

Placing heavier
boxes on the

bottom

Working within
constraints set by

clientSave
MARSHALLTOWN
money in fees and

overall shipping costs

1

2

3

4

Background

Preexisting Code:

Current packing engine

Starter project-- EB-AFIT

algorithm

❖ C#

➢ Blazor client side

■ .NET Core

➢ C# Server side

■ .NET Standard

● Algorithm

● Linq2Db

❖ SQL Database

➢ Stored Procedures

➢ Box information

Design
Requirements

❖ For Mixed cases...
➢ Most cost efficient box size, weight,

and quantity of boxes for a given
list of items to be packed

❖ For pallets...
➢ Prioritize heaviest items at the

bottom
➢ Certain items cannot be reoriented
➢ Abnormal items pose large issues

during packing
➢ Packing items of the same type

together

❖ Overall…
➢ Maximize cost savings for

MARSHALLTOWN shipments

Design - Architecture

Design
Database

❖ Base schemas from
MARSHALLTOWN

❖ Hosted on Azure
❖ Two tables used

➢ ItemsToPalletize
➢ BoxData

❖ Alterations made
➢ CanBeFlagpole
➢ CharWeight
➢ IsAbnormalPack

❖ Test Datasets
➢ R44999 (general test set), R55999

(items grouped together), R44888
(minimal set)

Design
Database Connector

❖ Utilizes Linq2DB
➢ Put connection information into .tt

file and save

➢ Generates class with database

information

➢ Uses C# Interface that performs

the actual retrieval to access data

in other projects

Design - Frontend
Blazor with THREE.js

THREE.js Visualization Key

❖ Red Box: Weight Class A

❖ Blue Box: Weight Class B

❖ Green Box: Weight Class C

❖ Black Outline: No orientation

restrictions

❖ White Outline: Vertical

orientation restrictions

http://www.youtube.com/watch?v=beDfFC9pkxo

Design
Algorithm

❖ Utilizes EB-AFIT Algorithm
➢ Algorithm from a master's thesis in

early 2000s

➢ Designed to mimic human thought

while efficiently packing a pallet

➢ Approximately 1500 lines

Design - Algorithm flow

Design - Grouping Items
Changes made outside of algorithm and effects algorithm entry
Tries to pack by item, if a layer has been made then group by layer and record qty to make a layer with item

Design - Restricting Orientation
Added respective bit to flag if an item can be reoriented
Determined that the FindBox method was where check for orientation should occur

Design - Weighted Item Stacking
Broke down list of items to be packed within the EB-AFIT algorithm to three Lists, pertaining to each
weight class

Design
Ongoing Development

❖ Abnormal Items
➢ Will utilize disallowing of rotation
➢ In FindBox, set height of item to

max remaining height in pallet and
push initial item height to a list

■ Reset item’s height for
visualization during
OutputBoxList

❖ Container Packing
➢ Will occur outside of EB-AFIT

algorithm
➢ Will loop through containers with

items and when a volume metric is
met, save the container as
successfully packed and remove
those items from the list

Tasks

1. Determine and create script for SQL
Database creation
2. Learning new software and
frameworks
3. Testing current project and
determining any additional shortcomings
4. Algorithm return model
determination/updating
5. Adjusting the algorithm for heaviest
at the bottom
6. Adjusting the algorithm to work
with items that cannot be reoriented
7. Adjusting the algorithm to work
with abnormally shaped items

8. Adjusting algorithm to determine
most efficient box size for given list
9. Adjusting algorithm to determine

most efficient box weight for given list
10. Adjusting algorithm to determine
most efficient box quantity for given

list
11. Making packing algorithm work for

both pallet packing, and box
packing...

12. UI and visualization rework
13. Unit testing application

14. Edge case testing application

1. Determine and create script for SQL
Database creation

2. Learning new software and
frameworks

6. Adjusting the algorithm to work
with items that cannot be reoriented

12. UI and visualization rework

3. Testing current project and
determining any additional
shortcomings

4. Algorithm return model
determination/updating

5. Adjusting the algorithm for
heaviest at the bottom

7. Adjusting the algorithm to work
with abnormally shaped items

11. Making packing algorithm work
for both pallet packing, and box
packing...

13. Unit testing application8. Adjusting algorithm to determine
most efficient box size for given list

10. Adjusting algorithm to determine
most efficient box quantity for given
list

9. Adjusting algorithm to determine
most efficient box weight for given
list 14. Edge case testing

application

Future Work

❖ Abnormal Item Orientation
❖ Container Packing
❖ Better UI prompts

➢ Show current Item/Container name
when packing

➢ If a layer of one item, show count of
them and item type

❖ Grouped Item fixes
➢ Make sure the layer of grouped

items won’t fall off overhang

❖ Get customer’s pallet
requirements by custOrderNo
(would require more
MARSHALLTOWN data)

Facilities and
Equipment

● C# pallet packing
○ Blazor

○ SQL Database connector

○ Packing algorithm

● SQL scripts

Questions?

