
While our original design goals have been met, there are still many 
features that could expand the impact of this project. Possible 
additions could be:

• Alert users when pressure exceeds a set value

• Record pressure history and use ML analysis to detect trends 
over time

• Customizability, such as multiple font sizes and colors

• A calibration wizard with images to better display calibration 
instructions

Care-Mate: Pressure Distribution Mapping System 
Team 17: Benjamin Allen, Clay Griscom, Hugo Serrano, Kira Threlfall, and David Whelan

Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR
Sponsors: Jennifer Steinaur, PTA, Natha Jowers, PT, UAMS Outpatient Therapy Clinic, Fayetteville, AR. Mike Fohner, Josh Fohner.

Backend Organization

The Backend is the portion of the application code responsible 
for management of data and application logic. It is split into 
services, which are classes that have a single logical concern.

CalibrationService stores calibration information and calibrates 
input data. Calibration data is saved between sessions, so it is 
unnecessary to re-calibrate after each app launch.

HeatmapService formats data for use by the heatmap.js library.

BluetoothService manages connection to the pressure sensor 
and acquisition of data. The BluetoothService class is a contract 
implemented by two subclasses. LocalBluetoothService creates 
random data for testing during development, allowing for faster 
iteration. HC06BluetoothService connects to the pressure pad 
Bluetooth transmitter and decodes the serial data it sends. Both 
services expose data in the same manner, so dependent services 
are unconcerned with which one is used.

We also developed an event system to allow data to be passed 
from BluetoothService to its dependent services without constant 
polling. These events can also trigger a refresh in the views.

Future Work

Introduction
Patients that are bound to wheelchairs 
suffer from restricted blood flow. This is 
caused by pressure between boney areas 
and the wheelchair itself. This restricted 
blood flow leads to the formation of 
pressure ulcers. These pressure ulcers can 
burrow down into the flesh, decrease the 
patient's quality of life, and increase risk of 
infection.

Currently the only way to address these pressure ulcers is through 
preventative measures. The patient must be constantly adjusted, 
and the chair kept clean. However, the caretaker has no feedback 
on where the high-pressure areas are occurring. In this project we 
create an application that will interface with a pressure mapping 
system. 

Testing
Software – To test the software a set of mock data was created 

that mimicked the sensor data that would be sent to the app. This data 
was a series of 64 8-bit number sets divided by one 8-bit number that 
would act as a signal bit telling the app that the whole data set has 
been sent and a new one is starting. To test the Bluetooth software 
components before the hardware was complete an Arduino fitted with 
an HC-06 Bluetooth module was set to send mock data to the app. 
This tested the Bluetooth connection and data collection inside the 
app with the specific Bluetooth module used on the hardware.

Hardware – The hardware was tested throughout the process to 
test each of the hardware components functionality. A set of eight 
LEDs were put on the board to act as testing points. These LEDs were 
set between the microcontroller and the multiplexer control pins. This 
allowed us to always know which sensor was currently being read into 
the micro-controller so we could test each individual sensor. We began 
by testing the Bluetooth module by sending signals from the 
microcontroller to be broadcast to a phone with a Bluetooth 
terminal. We tested the analog to digital converter by reading in the 
data of one sensor and broadcasting it to the Bluetooth terminal on a 
phone.

Integration Testing - Once the hardware was functioning correctly, 
we began testing the hardware and software components together. 
We began sending live sensor data from the microcontroller over 
Bluetooth to the application while pressing different sensors to test 
the end-to-end flow of data. 

Our visuals needed to be neat 
and simple so that important 
information wasn’t lost. A light-
blue color with a dark theme was 
chosen for visual appeal and eye 
strain reduction

Navigation of the application is 
handled by the side menu. A list 
of pages will appear, highlighting 
the current page, that will allow 
you to switch from one page to 
another.

The Bluetooth page initially 
displays a button to scan for 
Bluetooth devices. Once found a 
list of Bluetooth devices appears 
below that will allow the device 
to connect.

The Pressure Map page displays the live visual pressure maps in 
a color-blind friendly format, using the “viridis” color gradient. A tabs 
section located at the bottom of the page allows for quick map 
changes between bottom, back, or both pressure maps.

The Calibration page displays a set of instructions that will help the 
user calibrate the pressure pad. The blue buttons allow the user 
to calibrate a pad, while the red buttons allow the user to reset a pad.

Challenges

The pressure pad system and application needed to be built in 
parallel, making integration testing difficult. To accommodate for 
this, we created test data in the expected format we would receive 
from the pressure array and left three weeks for integration testing. 
The main difficulties we faced in testing were mostly expected and 
related to data formatting: we found that the characters between 0-
33 were unusable and adjusted for it. We also a delay in data 
transmission which caused the heatmap to become blank before 
redrawing. To remedy this, we ensured that the application 
had completely received the data before redrawing.

Frontend


