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Abstract 

One risk faced by wheelchair-bound patients is the development of pressure ulcers, which reduce 

the patient's quality of life and increase the risk of infection. This can lead to major 

complications. This project is designed to reduce this risk by constructing a pressure sensor array 

and application to enable visualization of high-pressure areas that may form pressure ulcers.  

There are several devices that can measure the pressure distribution on a wheelchair, but they are 

expensive and may be inaccessible. The application interfaces with the pressure sensor array via 

Bluetooth and then displays this information as a heatmap and allows users to calibrate the 

sensitivity of the pressure pad. 

1.0 Problem 

The problem we are trying to address significantly impacts people with disabilities that are 

bound to wheelchairs. Their placement in a wheelchair is vitally important to their quality of life. 

If not monitored carefully, those who spend considerable time in a wheelchair can develop 

pressure ulcers. Pressure ulcers in wheelchair users are caused by restrictions of blood flow due 

to sitting for extended periods of time. Not all patients in wheelchairs can feel when there is low 

blood flow. Additionally, it is impossible for caregivers to know where pressure ulcers might 

form, complicated by the inability to see pressure ulcers forming. Caregivers can adjust the 

patient in the wheelchair throughout the day, but this does not guarantee the prevention of 

pressure ulcers. 

These pressure ulcers are painful and make the patient more susceptible to infection, and there is 

a clear negative impact on the patient's quality of life. Currently there are a few products that 

offer solutions to this problem, which give a map of pressure distribution on a wheelchair seat. 

This distribution information can reveal points of high pressure that can lead to the formation of 

pressure ulcers. This can lead to better patient positioning and preventative measures.  

While these solutions exist, they lack accessibility in ease-of-use and cost. Current solutions are 

often expensive and directed at research instead of patient care. These difficulties often prevent 
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caregivers from using such tools. Some also require a dedicated computer, making them non-

portable. A portable solution would be easier to use for both caregivers and patients.  

2.0 Objective 

This is a joint project by students from the ELEG, BMEG, and CSCE departments in the College 

of Engineering, and a student from the Walton College of Business. The objective of this project 

is to design, build, and test a system to take pressure readings on a wheelchair and display this 

data. Our project is targeted at accessibility — instead of being designed to be used by 

researchers, the target audience is the caregiver. We, the CSCE team, will build a mobile 

application to interface with the hardware created by the Electrical and Biomedical Engineering 

teams. This app will provide real-time data displayed using a color blind-friendly format. The 

app will show pressure maps from both the seat and the back of the wheelchair. Bluetooth will be 

used to increase portability and enable communication with mobile phones running the Android 

operating system. 

By the end of the project, we will have an Android application that will allow the user to 

interface with a pressure sensor array placed on the wheelchair. The information provided by the 

sensor array and application will enable caregivers to better assist their patients. 

3.0 Background 

3.1 Key Concepts 

Heatmaps are graphical representations of data usually using a gradient of color to represent 

lower to higher values of data. Heatmaps can be used in a variety of ways to help visualize data 

collected, usually from an area of a screen, image, or sensors. It is commonly used to show 

temperature gradients.  

Pressure mapping is a visualization of the pressure exerted by a surface on a measurement 

device. The map can be viewed both live and statically depending on how the system and user 

decide on displaying the data. Pressure mapping is commonly used in medical examinations and 

in improving ergonomics in everyday objects. A pressure map is a heatmap that displays values 

of pressure. 

Bluetooth transmitters are electronics that allow devices to communicate with each other via the 

Bluetooth protocol. Transmitters can be connected to consumer devices by audio output or 

USB/Type-C ports, or electronically integrated into small-form-factor devices. They are 

commonly used to enable wireless communication without a Wi-Fi network. 

A Pulse Oximeter is a small device that measures a patient’s oxygen saturation level. It is a 

painless device to use since it only needs to be clipped onto a thin part of the body, like a finger, 

and uses light to measure how much oxygen is in the blood. Given the simplicity of the device it 

is used in many cases where the patient has a condition that may affect their blood oxygen levels 

like asthma or anemia. 
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3.2 Related Work 

The Body Pressure Measurement System (BPMS) by Tekscan is a similar system to the one we 

have created. The system is a mat containing a grid of pressure sensors that allows for a pressure 

distribution map displayed in software with the resolution equal to the number of sensors on the 

mat. The Tekscan BPMS system also promises to allow for multiple mats to be used to cover 

larger surface areas such as beds. The BPMS system is marketed for several different uses such 

as furniture and bed design, material testing, and seating or positioning research. The sensors all 

allow for a 5-psi pressure range with multiple sensor configurations that allow for different 

seating arrangements [1]. Our design will allow for wireless Bluetooth connection between the 

sensors and an android phone as opposed to the wired connection that the Tekscan system 

requires. This will allow for more convenient usage of our device by allowing freedom of 

movement when monitoring and adjusting the patient in their wheelchair. Another sensor by 

Xsensor called the ForSite SS is a pressure system designed specifically for assisting in 

wheelchair seating adjustment. The mat can be set on the wheelchair and monitor how the patient 

is sitting to aid in adjusting the patient’s seating. The Xsensor pressure system also comes with 

an app that connects via Bluetooth and allows the user to monitor the pressure map of the 

patient’s seat on the physician's tablet. It has a pressure range of 0.1 - 3.87 psi as well as 5 

frame/second refresh rate [2]. 

 

Figure 1: Xsensor ForSite SS Pressure Mat 

Blue Chip Medical Products, Inc. has a wheelchair pressure mapping system called the 

MeasureX Pressure Mapping system. This is a system also designed specifically for assisting in 

adjusting wheelchair bound patients based on pressure point analysis. Like the other sensors 

there is also compatible software that comes along with the sensor pad. The MeasureX system 

has wired and wireless options for communication between the software and sensors. The 

MeasureX has a larger range of up to 30 psi [3]. The BodiTrak2 Wireless IoT Pressure Mapping 

System is another general-purpose pressure mapping pad and software. They offer both a 

BodiTrak2 Pro and Lite app for PC or MacBooks and Android or iOS devices respectively. The 

pad is marketed for multiple different applications, one of them being wheelchair users. The 

BodiTrak offers two resolutions of sensors, one having 256 sensors and the other 1024 sensors 

[4]. The software displays a 2-Dimensional array of a pressure heat map similar to all the other 

devices.  
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Each of the designs listed are very similar to our proposed design. They all use a mat or pad with 

an array of pressure sensors that sit on the seat of a wheelchair to aid the physician in making 

seating adjustments for the patient. This will help prevent pressure ulcers from forming because 

of the patient not being seated properly. Each of the systems also has some sort of application 

that shows the pressure distribution map of the patient seated in the wheelchair. Our project 

differs in the following aspects. The first is the inclusion of a continuous pressure calibration 

system designed by the BMEG team which makes use of a Pulse Oximeter. Another difference is 

the price of our system in comparison to the other products listed. Our design has a bill of 

materials with a cost under $1000. With the addition of the Pulse Oximeter calibration tool and 

the price point we will be able to design a device that has an edge over the products already 

offered. 

4.0 Design 

4.1 Design Goals 

Wireless connectivity: A Bluetooth transmitter was used to communicate readings from the 

sensor array. Wired connectivity was not an option, as physical wires can become entangled in 

the wheelchair’s mechanisms. Constant connectivity between the application and the sensor 

array is required to enable continuous data updates. 

Companion Application: A mobile application was created to display readings from the sensor 

array. This application was developed to run Android operating system. It enables the user to 

switch between viewing data from the seat pressure sensor array, the back pressure sensor array, 

or both simultaneously. The data received from the sensor array is displayed as a heatmap, with a 

color palette designed to be usable by color blind individuals.  

Sensor Array: A single prototype sensor array of 64 pressure sensors was constructed by the 

ELEG team with assistance from Clay Griscom on the CSCE team. It is used to gather pressure 

readings from the wheelchair user; these are processed by a microcontroller then sent through a 

Bluetooth transmitter. Originally, we planned to construct two such arrays, but due to supply 

constraints, only a single array was constructed. This array can be moved between the seat and 

the back of the wheelchair. 

Calibration: The companion application provides a method for calibrating the pressure map 

display. To calibrate the application display, a caretaker first uses the continuous pressure 

calibration system to press the patient into the wheelchair. The continuous pressure calibration 

system is a device created by the BMEG team to assist in accurate calibration. When the Pulse 

Oximeter attached to the patient reports hypoxic blood flow, a caretaker presses the calibration 

button on the companion application. The application reads the pressure from the sensor array to 

calibrate the display and stores this information until the next calibration event. 

Accessibility: Heat maps that use all colors in the rainbow, while common, are not accessible to 

color blind users (see Figure 2). The pressure map visualizations in the companion application 

were made accessible to most color blind users by using the Viridis color scale [5]. Viridis is 

specifically designed for legibility by users with the most common forms of color blindness (see 

Figure 5). To ensure that users can properly interpret the map, we will provide a color scale to 

the side of each pressure map. As a stretch goal, we may allow the user to choose from a 

selection of color gradients. 
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Figure 2: The rainbow color scale, and the same scale as seen by green-blind users [5]. 

 

Figure 3: The Viridis color scale, and the same scale as seen by green-blind users [5]. 

Device Independence: The companion application was built on the Ionic framework [6], which 

provides a cross-platform development system based on Typescript. Ionic allows the application 

to run on both Android and iOS devices, although we limit our testing to Android devices due to 

availability of development hardware. 

4.2 Detailed Architecture 

Hardware 

There are two hardware components that have been designed by the ELEG team for this project: 

the pressure sensor to gather pressure information from the patient and the microcontroller that 

receives the raw pressure data from the sensors, organizes it, and transmits it over Bluetooth to 

the companion app on an Android phone. The sensor pad is a 12-inch x 12-inch pad consisting of 

64 sensors arranged in an 8 x 8 square and is designed to have each sensor read individually. The 

circuit board utilizes the PIC16F877A microcontroller as the control unit. The board consists of 

the microcontroller, an external quartz crystal clock, an HC-06 Bluetooth module, an AD5206 

digital potentiometer, and headers for each sensor with multiplexers to select the sensors. 

 

Figure 4: Hardware Data Flow Chart 
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The board has two 16 to 1 multiplexers that are used to select each sensor. One multiplexer is 

used as a high side voltage input to each sensor while the other is used as a data input to the 

microcontroller. The sensor array is set to have eight sensors share one multiplexer input going 

into the microcontroller with each of the eight sensors on that row having a separate voltage 

select from the other multiplexer. Having the two multiplexers in this orientation makes the 

selection of each sensor similar to accessing a 2-dimensional array with the voltage in 

multiplexer acting as the vertical axis and the data input multiplexer as the horizonal axis. This 

allows for all 64 sensors to be selected using only half of the inputs for each multiplexer. The 

board is capable of handling up to two sensor pads simultaneously with each sensor pad having 

256 sensors. The data from each sensor is sent to the microcontroller through one of the 

microcontroller’s analog-to-digital converter ports. This signal is scaled using the potentiometer 

to keep the signal within the desired range. Communication between the microcontroller and 

potentiometer is achieved through SPI communication from the microcontroller. Two 

configuration settings are sent that set the resistance range and channel select. Each multiplexer 

has 4 select ports that are mapped to 8 separate output ports on the microcontroller. The 

microcontroller selects each sensor one at a time and converts the sensor data to a discrete value. 

The microcontroller then converts that number to an integer value from 33 to 125 that represents 

how much relative force is being put on each sensor. 

Once the microcontroller collects a data entry from the sensor it transmits the reading over 

Bluetooth to the companion application. The microcontroller can send one 8-bit value at a time 

though its USART transmission port. The microcontroller operates at a frequency of 8 MHz and 

is configured to a baud rate of 9600 for asynchronous serial communication. The integer sensor 

value gets cast as an 8-bit character and is loaded into the transmit register of the 

microcontroller. The microcontroller waits for the transmit interrupt to occur signifying that the 

character has been sent and loads the next value. The Bluetooth module is connected to the 

USART transmit pin on the microcontroller and acts as a slave device that broadcasts the sensor 

data being sent from the microcontroller. For correct communication, the Bluetooth module is set 

to 9600 baud as well. Inside the code, an integer variable is set that acts as a counter. Every time 

a sensor is read the counter iterates to keep track of how many sensors have currently been read 

for that set of data. Once every sensor has been read the counter resets and the microcontroller 

sends either 255 or 254 to the phone application to signify the completion of that data packet. If 

255 is sent, then the microcontroller has sent data from the seat sensor; if 254, then a set of back 

sensor data has been sent. 

Frameworks and Libraries 

To make our application as accessible as possible we decided to make it as platform agnostic as 

possible. We chose to develop our application with the Ionic Framework [6] to meet this goal. 

Ionic allows development using the React, Vue, or Angular frameworks. Our project uses 

Angular as this had the best documentation and some team members had Angular experience. 

Ionic applications are developed as web applications in TypeScript, an extension of JavaScript. 

This allows us to prototype the application locally without needing to use emulators or actual 

hardware. When the application is ready to be tested in hardware, Ionic can be used to generate 

native applications for both IOS and Android. Since these are native applications, they can be 

distributed through the relevant app store and do not require online hosting services like a 
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traditional web app. The native applications are more friendly to use since it is placed on the 

users’ home screen for easy access. 

Additionally, a JavaScript library called heatmap.js [7] was used to handle the task of drawing 

pressure map data onto the page and a module called capacitor-bluetooth-serial was used to 

interface with Android’s Bluetooth capabilities [8]. Heatmap.js was used without modification, 

except for a necessary change to one script file to fix a bug caused by an update to Chrome-based 

browsers. The capacitor-bluetooth-serial module also required another single line change due to 

browser updates. 

User Interface and User Experience 

Falling in the category of health-related applications, the companion application must be neat 

and simple to navigate. It uses the sans-serif font family, primarily the Roboto font, since it 

allows for more natural reading rhythm with its natural width lettering. Key sections in the 

application have a larger title font size that will allow the user to swiftly see what they are 

looking at. The application uses a dark theme to reduce eye strain, while the color scheme for the 

application is a light blue hue that will evoke feelings of safety and relaxation from the user 

while they navigate the application. 

The companion application is divided into three pages accessing different functionalities. The 

three pages contain the Pressure Map, Bluetooth, and Calibration page. Navigation of the 

application is controlled by the side menu that shows the three different pages that are accessible. 

For smoother navigation, the current page will be highlighted blue from the list of pages in the 

side menu (see Figure 5). Once a page is selected, the side menu will close, and the selected page 

will be displayed. 

 

Figure 5: Care-Mate Companion side-menu navigation 

On the Pressure Map page (see Figure 6), you will see a content view and tab bar with three 

buttons on the bottom. The content view holds the pressure map and a legend, using the Viridis 

color scale [5], with a title describing the map directly below.  The tab bar will allow the user to 

quickly switch which pressure map is being displayed. One of the buttons on the tab bar will be 

highlighted to show which pressure map is currently being displayed. The buttons on the tab bar 

have an icon and description pair. The “Back” button has a portrait icon that will display the 

pressure map of the back pad, the “Seat” button has a landscape icon that will display the 

pressure map of the seat pad, and the “Both” button has a stack icon that will display the pressure 

map of both back and seat pads. 
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Figure 6: Care-Mate Companion Pressure Map page. 

The Bluetooth page (see Figure 7) displays a title, instructions, a button, and a list. The title 

allows for a simple reminder that they are on the Bluetooth page, while the instructions tell the 

user to put the other device into pairing mode. The button is colored blue to stand out and has the 

word “scan”. Once the application scans for devices, all the available devices will populate in a 

list below the “Available devices” line. From there the user can select the pressure pad from the 

list to connect to the application.  

 

Figure 7: Care-Mate Companion Bluetooth page. 
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The Calibrate page (see Figure 8) will display a title, instructions, and buttons. The page starts 

with the title to tell the user that this is where the pressure pad is being calibrated, followed with 

some instructions on how to calibrate the pressure pad. Directly below the instructions there is a 

landscape icon to give the user an image to refer to the pressure pad. All of this leads the user 

down to a pair of blue calibrate buttons and red reset buttons.  

 

Figure 8: Care-Mate Companion Calibrate page. 

Application Logic and Backend 

The backend logic for the companion application is modularized into multiple services, each 

with a single concern. These services are the BluetoothService, CalibrationService, and 

HeatmapService. These services are provided to the application views by dependency injection, 

and each service provides an interface detailing the methods that views can call. All services are 

singleton services, which means there is only one instance of each service shared across the 

application; this was necessary to maintain consistency within the application. We also 

developed a callback system to enable data updates to trigger view updates. The figure below 

illustrates the dependencies between the pages and services in the application. Note that every 

module depends on the Ionic framework as well. 
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Figure 9: An arrow pointing to a component is a dependency on that component, i.e., the calibration page depends 

on CalibrationService. Ionic storage and heatmap.js are external modules not written by our team. 

We needed to develop a small event communication system to enable automatic refreshing of the 

pressure map displays whenever new data was received from the Bluetooth transmitter. Ionic 

previously provided a publisher-subscriber event system but this has been deprecated. Our 

solution was to have views and services register callback methods that can be called to 

communicate the receipt of new data. 

The BluetoothService is responsible for connecting and communicating data between the 

pressure pad and the mobile device. To enable the testing scheme that is described below, the 

BluetoothService was implemented using Contracts. There is an abstract class that defines the 

functions and data used by a BluetoothService. This definition allows for several Bluetooth 

implementations that are interchangeable. Currently there are two different BluetoothService 

implementations. The first implementation is the LocalBluetoothService which generates random 

data without any hardware dependencies. This allows for concurrent development when the 

hardware resources are limited. The second Bluetooth service is the HC06BluetoothService. This 

service interfaces with a Bluetooth module to retrieve the pressure data.  

The CalibrationService is responsible for storing calibration data and using the current 

calibration data to calibrate input data. On initialization of the application, the CalibrationService 

is constructed with any previously stored calibration data. If there is no calibration data from 

persistent storage, it assumes a default array. The CalibrationService has methods to set 

calibration array and scale input data with a stored calibration array. When setting the calibration 

array, we store the array on the device, using the Ionic storage-angular module, and locally. The 

calibration methods call the BluetoothService to receive the most recent input from the sensor 

array. These methods are asynchronous to ensure that data is being received and stored 

successfully. The methods to scale input data use the calibration arrays stored locally to decrease 

wait time when updating the pressure map view. Separate methods exist for both back and seat 

sensor arrays, so we can easily extend this application to accommodate two input arrays. 

The HeatmapService is responsible for properly scaling and formatting received data so the 

pressure map can be optimally displayed. This data is then provided to the heatmap.js plugin for 

drawing onto the screen. HeatmapService exposes methods to scale the displayed pressure map 
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to match the user’s screen size, generate a configuration profile for the heatmap based on the 

current selected page, and package data received from the CalibrationService and 

BluetoothService for heatmap.js. Upon creation the service registers itself with the 

BluetoothService’s callback for received data. After initialization, whenever the 

BluetoothService receives data, it calls the method registered by the HeatmapService. This 

method adds scaled coordinate information to the data and then notifies the view that new data 

has been received. We did not originally plan to need a separate service just for displaying 

pressure maps, but due to the limitations imposed by Ionic we had to build this service to manage 

the visual configuration without duplication of code. 

Code Structure 

Ionic structures the source code as a collection of nested modules; the organization of these 

modules is similar to an Angular project. Project-specific source code is stored in the “src/app” 

directory. Each service (HeatmapService, BluetoothService, CalibrationService) is stored in a 

directory called heatmap, bluetooth, and calibration, respectively. Ionic stores pages under a 

subdirectory named pages, and each page is able to store subpages as subdirectories. Within 

these directories, HTML files provide page structure, SCSS files provide styling information, 

and Typescript files provide the logic for the view and request routing. 

Development Testing 

Our project is dependent on the hardware designed by the Electrical Engineering team. This 

could have caused bottlenecks in our development process if they ran into any issues. To combat 

this problem, we structured our project to handle different types of input and planned several 

different testing methods. There is a local Bluetooth service that generates random data that can 

be displayed. This allows us to test the rest of the application without needing to rely on 

hardware. That still did not allow us to test any of the required Bluetooth connectivity. When 

parts were ordered, an additional Bluetooth module was ordered for us to use. This module was 

hooked up to an Arduino microcontroller. This microcontroller was programmed to send mock 

data like the local Bluetooth service. The mock hardware allowed us to test connection and data 

processing well ahead of the completion of the sensor pad.  

 

Figure 10: The Arduino microcontroller attached to the Bluetooth module used for development testing 
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Hardware Testing 

The Hardware was tested at multiple stages throughout development. The first testing stage was 

to confirm that the microcontroller was operating as expected and communication between the 

MPLAB IDE and the microcontroller was correct. The Electrical Engineering team put eight 

LED lights on the multiplexer select lanes that allowed for this testing. Simple programs were 

created that toggled the LEDs to confirm that each of the I/O ports and the microcontroller were 

working correctly. These LEDs would also aid in knowing which sensor signal we were 

receiving at any given time. The next set of testing was the Bluetooth communication from the 

microcontroller. To do this a program was created that continuously sent signals from the 

microcontroller to the Bluetooth module. The module would broadcast the data and get picked 

up by the Bluetooth receiver on an android phone. The data would get displayed and verified on 

a Bluetooth terminal on the phone. When the signal was not correct an oscilloscope would be 

used on the leads going into the Bluetooth module from the microcontroller to see the signal and 

make adjustments. Once the Bluetooth module was verified the analog to digital converter could 

be tested by the Bluetooth module. The sensor pad was plugged into the PCB and the 

multiplexers were hardcoded to read only one sensor at a time. The potentiometer and A to D 

converter were configured and the sensor data was read into the microcontroller then sent out to 

the phone and read on the phone's Bluetooth terminal. To test different sensors, code was 

implemented to walk through the pad selecting one sensor at a time to confirm each sensor 

behaved correctly. 

Integration Testing 

At this point end-to-end testing with the app could begin. The full microcontroller code was 

implemented then tested using the application on a test phone. The phone was connected to a 

laptop while running the Chrome inspect tool from the DevTool suite. This allowed us to 

monitor what the app was picking up from the microcontroller. Instead of seeing one sensor 

value at a time we could see all 64 sensors at once every iteration. This configuration was used to 

test the full program on the microcontroller and monitor the sensor display. We were able to test 

the interaction between the app and microcontroller as well. By seeing the functioning 

application, we were able to make hardware and software adjustments to improve the readability 

of the sensor heatmap. Changing the scaling of the internal hardware cleaned up the sensor array 

and revealed new problems with the hardware and software. Most of these problems pertained to 

data formatting. We continued this testing process to ensure that the whole system was working 

properly. To see an extensive list of what we fixed, refer to the tasks that took place between 

3/31/2022 and 4/14/2022 in schedule in section 4.5. 
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4.3 Risks 

Risk Risk Reduction 

HIPAA compliance introduces 

legal complexity 

With our architecture above the only information that may 

be saved are the calibration values and the connection 

information, which are not specific to any patient. 

Sensor Array design is 

dependent on other teams 

We developed mock sensor array data and a non-hardware 

dependent Bluetooth service to test the application while the 

prototype sensor array was being produced. We also tested 

our Bluetooth connectivity with an Arduino that sends mock 

data to a Bluetooth transmitter. 

Creation of an iOS-compatible 

application would hinder 

progress on the prototype 

We decided to only develop the application for the Android 

operating system to avoid duplicating effort and increasing 

costs on acquisition of Apple development hardware. 

Android was chosen because the development ecosystem is 

freely available, test hardware is simpler and cheaper to 

acquire, and because some team members already have 

experience developing Android applications. 

4.4 Tasks  

Below is a brief outline of the tasks we completed for this project. Please refer to section 4.5 

Schedule for a more detailed task list. 

1. Verify requirements with BMEG and ELEG teams to ensure understanding across teams. 

2. Write the final proposal report based on feedback given to draft proposal report. 

3. (Beginning of Capstone II) Create the team website to track progress. 

4. Collaborate with the ELEG team throughout the semester to build the pressure pad system. 

5. Create mock data of the sensor arrays to simulate the application without requiring the 

assembled sensor array. 

6. Set up our development environments. 

7. Create the BluetoothService to allow for connectivity through Bluetooth. 

8. Create the CalibrationService to handle all computations related to calibration. 

9. Create the HeatmapService to handle the heatmap display logic. 

10. Create the Bluetooth page to allow users to connect to devices. 

11. Create the Calibration page to allow users to calibrate the system with the current input 

from the sensor array. 

12. Create the Pressure Map pages to allow users to view the current input from the sensor 

array adjusted for calibration. 

13. Add events to update the Pressure Map pages 

14. Continuously test the application with a Bluetooth module, Arduino, and mock data. 

15. Test the application with the sensor array system. 

16. Solicit feedback from BMEG and ELEG teams regarding application functionality and any 

required changes. 

17. Implement required changes (if any). 

18. Create the Final Report, Final Presentations, and poster. 
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4.5 Detailed Schedule  

Tasks  Start by  Complete by  

Verify requirements  11/1/2021  11/15/2021  

Write final proposal report  11/15/2021  11/28/2021  

Create the team website 11/28/2021  12/7/2021  

Create individual pages 11/28/2021  12/7/2021  

Install Ionic CLI and Android Studio 1/20/2021 1/27/2022 

Define the Bluetooth interface 1/27/2022  2/3/2022 

Create calibration service to set calibration array 1/27/2022 2/3/2022 

Clear demo ionic screen 1/27/2022 2/3/2022 

Add UI elements to screen 1/27/2022 2/3/2022 

Update calibration data service to new requirements 2/3/2022 2/10/2022 

Calibration Page: add calibration UI elements and connect to 

service 

2/3/2022 2/10/2022 

Read Bluetooth library docs and Bluetooth module docs 2/3/2022 2/10/2022 

Research heatmap.js or find alternative 2/3/2022 2/10/2022 

Create static mock data of the sensor arrays for internal testing 1/27/2021  2/14/2022 

Collaborate with BMEG to improve UI 2/10/2022 2/17/2022 

Create the heat map display logic 2/10/2022 2/17/2022 

Add calibration service for separate top/bottom sensor arrays 2/3/2022 2/17/2022 

Hook up Bluetooth module to an Arduino 2/10/2022 2/22/2022 

Create the heat map display 2/17/2022 2/24/2022 

Add persistent calibration 2/17/2022 2/24/2022 

Change UI based on BMEG feedback 2/17/2022 2/24/2022 

Add Bluetooth page 2/24/2022 3/03/2022 

Create events to update data 2/24/2022 3/03/2022 

Connect Calibration to Bluetooth 2/24/2022 3/03/2022 

Create scaling logic for heatmap 2/24/2022 3/03/2022 

Read documentation (hardware data sheets) 2/1/2022 3/03/2022 

Create mock data of sensor arrays to be sent through Bluetooth 2/24/2022 3/03/2022 

Test PCB with ELEG 2/14/2022 3/01/2022 
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Complete Preliminary Report and Presentation 3/08/2022 3/13/2022 

Add temperature scale next to maps 3/03/2022  3/17/2022  

Create calibration confirmation popup 3/03/2022  3/17/2022  

Test sending data through Bluetooth module to phone 2/17/2022 3/17/2022 

Add reset calibration method 3/03/2022  3/17/2022  

Make pressure map colorblind friendly 3/03/2022  3/17/2022  

Program Microcontroller 2/1/2022 3/14/2022 

Add a color scale so users can easily read the pressure map 3/17/2022  3/24/2022  

Add reset calibration button 3/17/2022  3/24/2022  

Assemble the Sensor Array 3/01/2022 3/24/2022 

Test the phone with the sensor array 3/24/2022 4/07/2022 

Fix bug in capacitor-bluetooth-serial library 3/31/2022 4/14/2022 

Fix how HC06 Bluetooth service formats data 3/31/2022 4/14/2022 

Fix error in calibration service with HC06BluetoothService 3/31/2022 4/14/2022 

Fix double click on calibrate button causes error 3/31/2022 4/14/2022 

Give confirmation of Bluetooth connection 3/31/2022 4/14/2022 

Fix ascii error in micro controller 3/31/2022 4/14/2022 

Switch expected values from 0-100 to 33-125 3/31/2022 4/14/2022 

Create Final Report, Presentation, and Poster 4/14/2022  4/25/2022  

 

4.6 Deliverables 

• Design document: Describes and diagrams the architecture of the completed application. 

Also describes and diagrams the hardware components of the system. 

• Project web site: Archived project web site completed during Capstone II. 

• Android application source code: Complete source code, build files, and layout files 

necessary to build and install the companion mobile application. The source code will be 

organized as an Android Studio project for easiest compilation and installation/emulation. 

• Final Report and Presentation: Description of work completed, additional goals 

contained, and an outline of possible future work. 
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5.0 Key Personnel 

Benjamin Allen – Allen is a senior Computer Science/Computer Engineering major in the 

Computer Science and Computer Engineering Department at the University of Arkansas. He has 

completed courses in mobile application development and software engineering, along with a 

longstanding internship as a software engineering consultant where he has developed web 

servers and mobile applications. His responsibilities are centered on the development of the 

mobile application with a focus on the pressure map display logic and backend organization. 

Clay Griscom – Griscom is a Senior Computer Engineering major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed System 

Synthesis and modeling and Circuits and Electronics which will help in the hardware 

development of the project. Responsible for aiding in the development of the communication 

hardware between the application and sensor array. 

Hugo Serrano – Serrano is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed Mobile 

Programming and Information Retrieval which applies to this project. He is responsible for 

application development and UI/UX. 

Kira Threlfall – Threlfall is a senior Computer Science and Pure Math major in the Computer 

Science and Computer Engineering Department at the University of Arkansas. She has 

completed Algorithms and Information Retrieval which are relevant to application development. 

She has been a Mobile Application Development Intern for J.B. Hunt and a Software 

Engineering Intern for Arvest where she learned about mobile application development and API 

development. Threlfall is responsible for application design and data manipulation. 

David Whelan – Whelan is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed relevant 

courses. He has taken Ubiquitous and Wearable Computing and Mobile programming which 

directly applies to this project. He has also interned at Marshalltown Tools and Ayoka LLC 

where he gained experience in business process and working with large code bases. He is 

responsible for team coordination and Bluetooth connectivity. 

Jennifer Steinauer, PTA and Nathan Jowers, PT – Steinauer and Jowers work for the UAMS 

outpatient clinic and provided our team with technical support and used their in-the-field 

experience to guide us. 

Mike and Josh Fohner – The Fohners have donated a wheelchair for use during the hardware 

development and testing of this project. 

6.0 Facilities and Equipment 

Members of the CSCE used their personal computers to develop the Android application. We 

checked out Android phones from the department in order to test the Bluetooth interface. For 

testing before the sensor array system was complete, we used an HC-06 Bluetooth module and 

an Arduino.  
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