

1

University of Arkansas – CSCE Department

Capstone II – Final Report– Fall 2021

Care-Mate:

Wheelchair Pressure Distribution Mapping System

Benjamin Allen, Clay Griscom, Hugo Serrano,

Kira Threlfall, David Whelan

Abstract

One risk faced by wheelchair-bound patients is the development of pressure ulcers, which reduce

the patient's quality of life and increase the risk of infection. This can lead to major

complications. This project is designed to reduce this risk by constructing a pressure sensor array

and application to enable visualization of high-pressure areas that may form pressure ulcers.

There are several devices that can measure the pressure distribution on a wheelchair, but they are

expensive and may be inaccessible. The application interfaces with the pressure sensor array via

Bluetooth and then displays this information as a heatmap and allows users to calibrate the

sensitivity of the pressure pad.

1.0 Problem

The problem we are trying to address significantly impacts people with disabilities that are

bound to wheelchairs. Their placement in a wheelchair is vitally important to their quality of life.

If not monitored carefully, those who spend considerable time in a wheelchair can develop

pressure ulcers. Pressure ulcers in wheelchair users are caused by restrictions of blood flow due

to sitting for extended periods of time. Not all patients in wheelchairs can feel when there is low

blood flow. Additionally, it is impossible for caregivers to know where pressure ulcers might

form, complicated by the inability to see pressure ulcers forming. Caregivers can adjust the

patient in the wheelchair throughout the day, but this does not guarantee the prevention of

pressure ulcers.

These pressure ulcers are painful and make the patient more susceptible to infection, and there is

a clear negative impact on the patient's quality of life. Currently there are a few products that

offer solutions to this problem, which give a map of pressure distribution on a wheelchair seat.

This distribution information can reveal points of high pressure that can lead to the formation of

pressure ulcers. This can lead to better patient positioning and preventative measures.

While these solutions exist, they lack accessibility in ease-of-use and cost. Current solutions are

often expensive and directed at research instead of patient care. These difficulties often prevent

 2

caregivers from using such tools. Some also require a dedicated computer, making them non-

portable. A portable solution would be easier to use for both caregivers and patients.

2.0 Objective

This is a joint project by students from the ELEG, BMEG, and CSCE departments in the College

of Engineering, and a student from the Walton College of Business. The objective of this project

is to design, build, and test a system to take pressure readings on a wheelchair and display this

data. Our project is targeted at accessibility — instead of being designed to be used by

researchers, the target audience is the caregiver. We, the CSCE team, will build a mobile

application to interface with the hardware created by the Electrical and Biomedical Engineering

teams. This app will provide real-time data displayed using a color blind-friendly format. The

app will show pressure maps from both the seat and the back of the wheelchair. Bluetooth will be

used to increase portability and enable communication with mobile phones running the Android

operating system.

By the end of the project, we will have an Android application that will allow the user to

interface with a pressure sensor array placed on the wheelchair. The information provided by the

sensor array and application will enable caregivers to better assist their patients.

3.0 Background

3.1 Key Concepts

Heatmaps are graphical representations of data usually using a gradient of color to represent

lower to higher values of data. Heatmaps can be used in a variety of ways to help visualize data

collected, usually from an area of a screen, image, or sensors. It is commonly used to show

temperature gradients.

Pressure mapping is a visualization of the pressure exerted by a surface on a measurement

device. The map can be viewed both live and statically depending on how the system and user

decide on displaying the data. Pressure mapping is commonly used in medical examinations and

in improving ergonomics in everyday objects. A pressure map is a heatmap that displays values

of pressure.

Bluetooth transmitters are electronics that allow devices to communicate with each other via the

Bluetooth protocol. Transmitters can be connected to consumer devices by audio output or

USB/Type-C ports, or electronically integrated into small-form-factor devices. They are

commonly used to enable wireless communication without a Wi-Fi network.

A Pulse Oximeter is a small device that measures a patient’s oxygen saturation level. It is a

painless device to use since it only needs to be clipped onto a thin part of the body, like a finger,

and uses light to measure how much oxygen is in the blood. Given the simplicity of the device it

is used in many cases where the patient has a condition that may affect their blood oxygen levels

like asthma or anemia.

 3

3.2 Related Work

The Body Pressure Measurement System (BPMS) by Tekscan is a similar system to the one we

have created. The system is a mat containing a grid of pressure sensors that allows for a pressure

distribution map displayed in software with the resolution equal to the number of sensors on the

mat. The Tekscan BPMS system also promises to allow for multiple mats to be used to cover

larger surface areas such as beds. The BPMS system is marketed for several different uses such

as furniture and bed design, material testing, and seating or positioning research. The sensors all

allow for a 5-psi pressure range with multiple sensor configurations that allow for different

seating arrangements [1]. Our design will allow for wireless Bluetooth connection between the

sensors and an android phone as opposed to the wired connection that the Tekscan system

requires. This will allow for more convenient usage of our device by allowing freedom of

movement when monitoring and adjusting the patient in their wheelchair. Another sensor by

Xsensor called the ForSite SS is a pressure system designed specifically for assisting in

wheelchair seating adjustment. The mat can be set on the wheelchair and monitor how the patient

is sitting to aid in adjusting the patient’s seating. The Xsensor pressure system also comes with

an app that connects via Bluetooth and allows the user to monitor the pressure map of the

patient’s seat on the physician's tablet. It has a pressure range of 0.1 - 3.87 psi as well as 5

frame/second refresh rate [2].

Figure 1: Xsensor ForSite SS Pressure Mat

Blue Chip Medical Products, Inc. has a wheelchair pressure mapping system called the

MeasureX Pressure Mapping system. This is a system also designed specifically for assisting in

adjusting wheelchair bound patients based on pressure point analysis. Like the other sensors

there is also compatible software that comes along with the sensor pad. The MeasureX system

has wired and wireless options for communication between the software and sensors. The

MeasureX has a larger range of up to 30 psi [3]. The BodiTrak2 Wireless IoT Pressure Mapping

System is another general-purpose pressure mapping pad and software. They offer both a

BodiTrak2 Pro and Lite app for PC or MacBooks and Android or iOS devices respectively. The

pad is marketed for multiple different applications, one of them being wheelchair users. The

BodiTrak offers two resolutions of sensors, one having 256 sensors and the other 1024 sensors

[4]. The software displays a 2-Dimensional array of a pressure heat map similar to all the other

devices.

 4

Each of the designs listed are very similar to our proposed design. They all use a mat or pad with

an array of pressure sensors that sit on the seat of a wheelchair to aid the physician in making

seating adjustments for the patient. This will help prevent pressure ulcers from forming because

of the patient not being seated properly. Each of the systems also has some sort of application

that shows the pressure distribution map of the patient seated in the wheelchair. Our project

differs in the following aspects. The first is the inclusion of a continuous pressure calibration

system designed by the BMEG team which makes use of a Pulse Oximeter. Another difference is

the price of our system in comparison to the other products listed. Our design has a bill of

materials with a cost under $1000. With the addition of the Pulse Oximeter calibration tool and

the price point we will be able to design a device that has an edge over the products already

offered.

4.0 Design

4.1 Design Goals

Wireless connectivity: A Bluetooth transmitter was used to communicate readings from the

sensor array. Wired connectivity was not an option, as physical wires can become entangled in

the wheelchair’s mechanisms. Constant connectivity between the application and the sensor

array is required to enable continuous data updates.

Companion Application: A mobile application was created to display readings from the sensor

array. This application was developed to run Android operating system. It enables the user to

switch between viewing data from the seat pressure sensor array, the back pressure sensor array,

or both simultaneously. The data received from the sensor array is displayed as a heatmap, with a

color palette designed to be usable by color blind individuals.

Sensor Array: A single prototype sensor array of 64 pressure sensors was constructed by the

ELEG team with assistance from Clay Griscom on the CSCE team. It is used to gather pressure

readings from the wheelchair user; these are processed by a microcontroller then sent through a

Bluetooth transmitter. Originally, we planned to construct two such arrays, but due to supply

constraints, only a single array was constructed. This array can be moved between the seat and

the back of the wheelchair.

Calibration: The companion application provides a method for calibrating the pressure map

display. To calibrate the application display, a caretaker first uses the continuous pressure

calibration system to press the patient into the wheelchair. The continuous pressure calibration

system is a device created by the BMEG team to assist in accurate calibration. When the Pulse

Oximeter attached to the patient reports hypoxic blood flow, a caretaker presses the calibration

button on the companion application. The application reads the pressure from the sensor array to

calibrate the display and stores this information until the next calibration event.

Accessibility: Heat maps that use all colors in the rainbow, while common, are not accessible to

color blind users (see Figure 2). The pressure map visualizations in the companion application

were made accessible to most color blind users by using the Viridis color scale [5]. Viridis is

specifically designed for legibility by users with the most common forms of color blindness (see

Figure 5). To ensure that users can properly interpret the map, we will provide a color scale to

the side of each pressure map. As a stretch goal, we may allow the user to choose from a

selection of color gradients.

 5

Figure 2: The rainbow color scale, and the same scale as seen by green-blind users [5].

Figure 3: The Viridis color scale, and the same scale as seen by green-blind users [5].

Device Independence: The companion application was built on the Ionic framework [6], which

provides a cross-platform development system based on Typescript. Ionic allows the application

to run on both Android and iOS devices, although we limit our testing to Android devices due to

availability of development hardware.

4.2 Detailed Architecture

Hardware

There are two hardware components that have been designed by the ELEG team for this project:

the pressure sensor to gather pressure information from the patient and the microcontroller that

receives the raw pressure data from the sensors, organizes it, and transmits it over Bluetooth to

the companion app on an Android phone. The sensor pad is a 12-inch x 12-inch pad consisting of

64 sensors arranged in an 8 x 8 square and is designed to have each sensor read individually. The

circuit board utilizes the PIC16F877A microcontroller as the control unit. The board consists of

the microcontroller, an external quartz crystal clock, an HC-06 Bluetooth module, an AD5206

digital potentiometer, and headers for each sensor with multiplexers to select the sensors.

Figure 4: Hardware Data Flow Chart

 6

The board has two 16 to 1 multiplexers that are used to select each sensor. One multiplexer is

used as a high side voltage input to each sensor while the other is used as a data input to the

microcontroller. The sensor array is set to have eight sensors share one multiplexer input going

into the microcontroller with each of the eight sensors on that row having a separate voltage

select from the other multiplexer. Having the two multiplexers in this orientation makes the

selection of each sensor similar to accessing a 2-dimensional array with the voltage in

multiplexer acting as the vertical axis and the data input multiplexer as the horizonal axis. This

allows for all 64 sensors to be selected using only half of the inputs for each multiplexer. The

board is capable of handling up to two sensor pads simultaneously with each sensor pad having

256 sensors. The data from each sensor is sent to the microcontroller through one of the

microcontroller’s analog-to-digital converter ports. This signal is scaled using the potentiometer

to keep the signal within the desired range. Communication between the microcontroller and

potentiometer is achieved through SPI communication from the microcontroller. Two

configuration settings are sent that set the resistance range and channel select. Each multiplexer

has 4 select ports that are mapped to 8 separate output ports on the microcontroller. The

microcontroller selects each sensor one at a time and converts the sensor data to a discrete value.

The microcontroller then converts that number to an integer value from 33 to 125 that represents

how much relative force is being put on each sensor.

Once the microcontroller collects a data entry from the sensor it transmits the reading over

Bluetooth to the companion application. The microcontroller can send one 8-bit value at a time

though its USART transmission port. The microcontroller operates at a frequency of 8 MHz and

is configured to a baud rate of 9600 for asynchronous serial communication. The integer sensor

value gets cast as an 8-bit character and is loaded into the transmit register of the

microcontroller. The microcontroller waits for the transmit interrupt to occur signifying that the

character has been sent and loads the next value. The Bluetooth module is connected to the

USART transmit pin on the microcontroller and acts as a slave device that broadcasts the sensor

data being sent from the microcontroller. For correct communication, the Bluetooth module is set

to 9600 baud as well. Inside the code, an integer variable is set that acts as a counter. Every time

a sensor is read the counter iterates to keep track of how many sensors have currently been read

for that set of data. Once every sensor has been read the counter resets and the microcontroller

sends either 255 or 254 to the phone application to signify the completion of that data packet. If

255 is sent, then the microcontroller has sent data from the seat sensor; if 254, then a set of back

sensor data has been sent.

Frameworks and Libraries

To make our application as accessible as possible we decided to make it as platform agnostic as

possible. We chose to develop our application with the Ionic Framework [6] to meet this goal.

Ionic allows development using the React, Vue, or Angular frameworks. Our project uses

Angular as this had the best documentation and some team members had Angular experience.

Ionic applications are developed as web applications in TypeScript, an extension of JavaScript.

This allows us to prototype the application locally without needing to use emulators or actual

hardware. When the application is ready to be tested in hardware, Ionic can be used to generate

native applications for both IOS and Android. Since these are native applications, they can be

distributed through the relevant app store and do not require online hosting services like a

 7

traditional web app. The native applications are more friendly to use since it is placed on the

users’ home screen for easy access.

Additionally, a JavaScript library called heatmap.js [7] was used to handle the task of drawing

pressure map data onto the page and a module called capacitor-bluetooth-serial was used to

interface with Android’s Bluetooth capabilities [8]. Heatmap.js was used without modification,

except for a necessary change to one script file to fix a bug caused by an update to Chrome-based

browsers. The capacitor-bluetooth-serial module also required another single line change due to

browser updates.

User Interface and User Experience

Falling in the category of health-related applications, the companion application must be neat

and simple to navigate. It uses the sans-serif font family, primarily the Roboto font, since it

allows for more natural reading rhythm with its natural width lettering. Key sections in the

application have a larger title font size that will allow the user to swiftly see what they are

looking at. The application uses a dark theme to reduce eye strain, while the color scheme for the

application is a light blue hue that will evoke feelings of safety and relaxation from the user

while they navigate the application.

The companion application is divided into three pages accessing different functionalities. The

three pages contain the Pressure Map, Bluetooth, and Calibration page. Navigation of the

application is controlled by the side menu that shows the three different pages that are accessible.

For smoother navigation, the current page will be highlighted blue from the list of pages in the

side menu (see Figure 5). Once a page is selected, the side menu will close, and the selected page

will be displayed.

Figure 5: Care-Mate Companion side-menu navigation

On the Pressure Map page (see Figure 6), you will see a content view and tab bar with three

buttons on the bottom. The content view holds the pressure map and a legend, using the Viridis

color scale [5], with a title describing the map directly below. The tab bar will allow the user to

quickly switch which pressure map is being displayed. One of the buttons on the tab bar will be

highlighted to show which pressure map is currently being displayed. The buttons on the tab bar

have an icon and description pair. The “Back” button has a portrait icon that will display the

pressure map of the back pad, the “Seat” button has a landscape icon that will display the

pressure map of the seat pad, and the “Both” button has a stack icon that will display the pressure

map of both back and seat pads.

 8

Figure 6: Care-Mate Companion Pressure Map page.

The Bluetooth page (see Figure 7) displays a title, instructions, a button, and a list. The title

allows for a simple reminder that they are on the Bluetooth page, while the instructions tell the

user to put the other device into pairing mode. The button is colored blue to stand out and has the

word “scan”. Once the application scans for devices, all the available devices will populate in a

list below the “Available devices” line. From there the user can select the pressure pad from the

list to connect to the application.

Figure 7: Care-Mate Companion Bluetooth page.

 9

The Calibrate page (see Figure 8) will display a title, instructions, and buttons. The page starts

with the title to tell the user that this is where the pressure pad is being calibrated, followed with

some instructions on how to calibrate the pressure pad. Directly below the instructions there is a

landscape icon to give the user an image to refer to the pressure pad. All of this leads the user

down to a pair of blue calibrate buttons and red reset buttons.

Figure 8: Care-Mate Companion Calibrate page.

Application Logic and Backend

The backend logic for the companion application is modularized into multiple services, each

with a single concern. These services are the BluetoothService, CalibrationService, and

HeatmapService. These services are provided to the application views by dependency injection,

and each service provides an interface detailing the methods that views can call. All services are

singleton services, which means there is only one instance of each service shared across the

application; this was necessary to maintain consistency within the application. We also

developed a callback system to enable data updates to trigger view updates. The figure below

illustrates the dependencies between the pages and services in the application. Note that every

module depends on the Ionic framework as well.

 10

Figure 9: An arrow pointing to a component is a dependency on that component, i.e., the calibration page depends

on CalibrationService. Ionic storage and heatmap.js are external modules not written by our team.

We needed to develop a small event communication system to enable automatic refreshing of the

pressure map displays whenever new data was received from the Bluetooth transmitter. Ionic

previously provided a publisher-subscriber event system but this has been deprecated. Our

solution was to have views and services register callback methods that can be called to

communicate the receipt of new data.

The BluetoothService is responsible for connecting and communicating data between the

pressure pad and the mobile device. To enable the testing scheme that is described below, the

BluetoothService was implemented using Contracts. There is an abstract class that defines the

functions and data used by a BluetoothService. This definition allows for several Bluetooth

implementations that are interchangeable. Currently there are two different BluetoothService

implementations. The first implementation is the LocalBluetoothService which generates random

data without any hardware dependencies. This allows for concurrent development when the

hardware resources are limited. The second Bluetooth service is the HC06BluetoothService. This

service interfaces with a Bluetooth module to retrieve the pressure data.

The CalibrationService is responsible for storing calibration data and using the current

calibration data to calibrate input data. On initialization of the application, the CalibrationService

is constructed with any previously stored calibration data. If there is no calibration data from

persistent storage, it assumes a default array. The CalibrationService has methods to set

calibration array and scale input data with a stored calibration array. When setting the calibration

array, we store the array on the device, using the Ionic storage-angular module, and locally. The

calibration methods call the BluetoothService to receive the most recent input from the sensor

array. These methods are asynchronous to ensure that data is being received and stored

successfully. The methods to scale input data use the calibration arrays stored locally to decrease

wait time when updating the pressure map view. Separate methods exist for both back and seat

sensor arrays, so we can easily extend this application to accommodate two input arrays.

The HeatmapService is responsible for properly scaling and formatting received data so the

pressure map can be optimally displayed. This data is then provided to the heatmap.js plugin for

drawing onto the screen. HeatmapService exposes methods to scale the displayed pressure map

 11

to match the user’s screen size, generate a configuration profile for the heatmap based on the

current selected page, and package data received from the CalibrationService and

BluetoothService for heatmap.js. Upon creation the service registers itself with the

BluetoothService’s callback for received data. After initialization, whenever the

BluetoothService receives data, it calls the method registered by the HeatmapService. This

method adds scaled coordinate information to the data and then notifies the view that new data

has been received. We did not originally plan to need a separate service just for displaying

pressure maps, but due to the limitations imposed by Ionic we had to build this service to manage

the visual configuration without duplication of code.

Code Structure

Ionic structures the source code as a collection of nested modules; the organization of these

modules is similar to an Angular project. Project-specific source code is stored in the “src/app”

directory. Each service (HeatmapService, BluetoothService, CalibrationService) is stored in a

directory called heatmap, bluetooth, and calibration, respectively. Ionic stores pages under a

subdirectory named pages, and each page is able to store subpages as subdirectories. Within

these directories, HTML files provide page structure, SCSS files provide styling information,

and Typescript files provide the logic for the view and request routing.

Development Testing

Our project is dependent on the hardware designed by the Electrical Engineering team. This

could have caused bottlenecks in our development process if they ran into any issues. To combat

this problem, we structured our project to handle different types of input and planned several

different testing methods. There is a local Bluetooth service that generates random data that can

be displayed. This allows us to test the rest of the application without needing to rely on

hardware. That still did not allow us to test any of the required Bluetooth connectivity. When

parts were ordered, an additional Bluetooth module was ordered for us to use. This module was

hooked up to an Arduino microcontroller. This microcontroller was programmed to send mock

data like the local Bluetooth service. The mock hardware allowed us to test connection and data

processing well ahead of the completion of the sensor pad.

Figure 10: The Arduino microcontroller attached to the Bluetooth module used for development testing

 12

Hardware Testing

The Hardware was tested at multiple stages throughout development. The first testing stage was

to confirm that the microcontroller was operating as expected and communication between the

MPLAB IDE and the microcontroller was correct. The Electrical Engineering team put eight

LED lights on the multiplexer select lanes that allowed for this testing. Simple programs were

created that toggled the LEDs to confirm that each of the I/O ports and the microcontroller were

working correctly. These LEDs would also aid in knowing which sensor signal we were

receiving at any given time. The next set of testing was the Bluetooth communication from the

microcontroller. To do this a program was created that continuously sent signals from the

microcontroller to the Bluetooth module. The module would broadcast the data and get picked

up by the Bluetooth receiver on an android phone. The data would get displayed and verified on

a Bluetooth terminal on the phone. When the signal was not correct an oscilloscope would be

used on the leads going into the Bluetooth module from the microcontroller to see the signal and

make adjustments. Once the Bluetooth module was verified the analog to digital converter could

be tested by the Bluetooth module. The sensor pad was plugged into the PCB and the

multiplexers were hardcoded to read only one sensor at a time. The potentiometer and A to D

converter were configured and the sensor data was read into the microcontroller then sent out to

the phone and read on the phone's Bluetooth terminal. To test different sensors, code was

implemented to walk through the pad selecting one sensor at a time to confirm each sensor

behaved correctly.

Integration Testing

At this point end-to-end testing with the app could begin. The full microcontroller code was

implemented then tested using the application on a test phone. The phone was connected to a

laptop while running the Chrome inspect tool from the DevTool suite. This allowed us to

monitor what the app was picking up from the microcontroller. Instead of seeing one sensor

value at a time we could see all 64 sensors at once every iteration. This configuration was used to

test the full program on the microcontroller and monitor the sensor display. We were able to test

the interaction between the app and microcontroller as well. By seeing the functioning

application, we were able to make hardware and software adjustments to improve the readability

of the sensor heatmap. Changing the scaling of the internal hardware cleaned up the sensor array

and revealed new problems with the hardware and software. Most of these problems pertained to

data formatting. We continued this testing process to ensure that the whole system was working

properly. To see an extensive list of what we fixed, refer to the tasks that took place between

3/31/2022 and 4/14/2022 in schedule in section 4.5.

 13

4.3 Risks

Risk Risk Reduction

HIPAA compliance introduces

legal complexity

With our architecture above the only information that may

be saved are the calibration values and the connection

information, which are not specific to any patient.

Sensor Array design is

dependent on other teams

We developed mock sensor array data and a non-hardware

dependent Bluetooth service to test the application while the

prototype sensor array was being produced. We also tested

our Bluetooth connectivity with an Arduino that sends mock

data to a Bluetooth transmitter.

Creation of an iOS-compatible

application would hinder

progress on the prototype

We decided to only develop the application for the Android

operating system to avoid duplicating effort and increasing

costs on acquisition of Apple development hardware.

Android was chosen because the development ecosystem is

freely available, test hardware is simpler and cheaper to

acquire, and because some team members already have

experience developing Android applications.

4.4 Tasks

Below is a brief outline of the tasks we completed for this project. Please refer to section 4.5

Schedule for a more detailed task list.

1. Verify requirements with BMEG and ELEG teams to ensure understanding across teams.

2. Write the final proposal report based on feedback given to draft proposal report.

3. (Beginning of Capstone II) Create the team website to track progress.

4. Collaborate with the ELEG team throughout the semester to build the pressure pad system.

5. Create mock data of the sensor arrays to simulate the application without requiring the

assembled sensor array.

6. Set up our development environments.

7. Create the BluetoothService to allow for connectivity through Bluetooth.

8. Create the CalibrationService to handle all computations related to calibration.

9. Create the HeatmapService to handle the heatmap display logic.

10. Create the Bluetooth page to allow users to connect to devices.

11. Create the Calibration page to allow users to calibrate the system with the current input

from the sensor array.

12. Create the Pressure Map pages to allow users to view the current input from the sensor

array adjusted for calibration.

13. Add events to update the Pressure Map pages

14. Continuously test the application with a Bluetooth module, Arduino, and mock data.

15. Test the application with the sensor array system.

16. Solicit feedback from BMEG and ELEG teams regarding application functionality and any

required changes.

17. Implement required changes (if any).

18. Create the Final Report, Final Presentations, and poster.

 14

4.5 Detailed Schedule

Tasks Start by Complete by

Verify requirements 11/1/2021 11/15/2021

Write final proposal report 11/15/2021 11/28/2021

Create the team website 11/28/2021 12/7/2021

Create individual pages 11/28/2021 12/7/2021

Install Ionic CLI and Android Studio 1/20/2021 1/27/2022

Define the Bluetooth interface 1/27/2022 2/3/2022

Create calibration service to set calibration array 1/27/2022 2/3/2022

Clear demo ionic screen 1/27/2022 2/3/2022

Add UI elements to screen 1/27/2022 2/3/2022

Update calibration data service to new requirements 2/3/2022 2/10/2022

Calibration Page: add calibration UI elements and connect to

service

2/3/2022 2/10/2022

Read Bluetooth library docs and Bluetooth module docs 2/3/2022 2/10/2022

Research heatmap.js or find alternative 2/3/2022 2/10/2022

Create static mock data of the sensor arrays for internal testing 1/27/2021 2/14/2022

Collaborate with BMEG to improve UI 2/10/2022 2/17/2022

Create the heat map display logic 2/10/2022 2/17/2022

Add calibration service for separate top/bottom sensor arrays 2/3/2022 2/17/2022

Hook up Bluetooth module to an Arduino 2/10/2022 2/22/2022

Create the heat map display 2/17/2022 2/24/2022

Add persistent calibration 2/17/2022 2/24/2022

Change UI based on BMEG feedback 2/17/2022 2/24/2022

Add Bluetooth page 2/24/2022 3/03/2022

Create events to update data 2/24/2022 3/03/2022

Connect Calibration to Bluetooth 2/24/2022 3/03/2022

Create scaling logic for heatmap 2/24/2022 3/03/2022

Read documentation (hardware data sheets) 2/1/2022 3/03/2022

Create mock data of sensor arrays to be sent through Bluetooth 2/24/2022 3/03/2022

Test PCB with ELEG 2/14/2022 3/01/2022

 15

Complete Preliminary Report and Presentation 3/08/2022 3/13/2022

Add temperature scale next to maps 3/03/2022 3/17/2022

Create calibration confirmation popup 3/03/2022 3/17/2022

Test sending data through Bluetooth module to phone 2/17/2022 3/17/2022

Add reset calibration method 3/03/2022 3/17/2022

Make pressure map colorblind friendly 3/03/2022 3/17/2022

Program Microcontroller 2/1/2022 3/14/2022

Add a color scale so users can easily read the pressure map 3/17/2022 3/24/2022

Add reset calibration button 3/17/2022 3/24/2022

Assemble the Sensor Array 3/01/2022 3/24/2022

Test the phone with the sensor array 3/24/2022 4/07/2022

Fix bug in capacitor-bluetooth-serial library 3/31/2022 4/14/2022

Fix how HC06 Bluetooth service formats data 3/31/2022 4/14/2022

Fix error in calibration service with HC06BluetoothService 3/31/2022 4/14/2022

Fix double click on calibrate button causes error 3/31/2022 4/14/2022

Give confirmation of Bluetooth connection 3/31/2022 4/14/2022

Fix ascii error in micro controller 3/31/2022 4/14/2022

Switch expected values from 0-100 to 33-125 3/31/2022 4/14/2022

Create Final Report, Presentation, and Poster 4/14/2022 4/25/2022

4.6 Deliverables

• Design document: Describes and diagrams the architecture of the completed application.

Also describes and diagrams the hardware components of the system.

• Project web site: Archived project web site completed during Capstone II.

• Android application source code: Complete source code, build files, and layout files

necessary to build and install the companion mobile application. The source code will be

organized as an Android Studio project for easiest compilation and installation/emulation.

• Final Report and Presentation: Description of work completed, additional goals

contained, and an outline of possible future work.

 16

5.0 Key Personnel

Benjamin Allen – Allen is a senior Computer Science/Computer Engineering major in the

Computer Science and Computer Engineering Department at the University of Arkansas. He has

completed courses in mobile application development and software engineering, along with a

longstanding internship as a software engineering consultant where he has developed web

servers and mobile applications. His responsibilities are centered on the development of the

mobile application with a focus on the pressure map display logic and backend organization.

Clay Griscom – Griscom is a Senior Computer Engineering major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed System

Synthesis and modeling and Circuits and Electronics which will help in the hardware

development of the project. Responsible for aiding in the development of the communication

hardware between the application and sensor array.

Hugo Serrano – Serrano is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed Mobile

Programming and Information Retrieval which applies to this project. He is responsible for

application development and UI/UX.

Kira Threlfall – Threlfall is a senior Computer Science and Pure Math major in the Computer

Science and Computer Engineering Department at the University of Arkansas. She has

completed Algorithms and Information Retrieval which are relevant to application development.

She has been a Mobile Application Development Intern for J.B. Hunt and a Software

Engineering Intern for Arvest where she learned about mobile application development and API

development. Threlfall is responsible for application design and data manipulation.

David Whelan – Whelan is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed relevant

courses. He has taken Ubiquitous and Wearable Computing and Mobile programming which

directly applies to this project. He has also interned at Marshalltown Tools and Ayoka LLC

where he gained experience in business process and working with large code bases. He is

responsible for team coordination and Bluetooth connectivity.

Jennifer Steinauer, PTA and Nathan Jowers, PT – Steinauer and Jowers work for the UAMS

outpatient clinic and provided our team with technical support and used their in-the-field

experience to guide us.

Mike and Josh Fohner – The Fohners have donated a wheelchair for use during the hardware

development and testing of this project.

6.0 Facilities and Equipment

Members of the CSCE used their personal computers to develop the Android application. We

checked out Android phones from the department in order to test the Bluetooth interface. For

testing before the sensor array system was complete, we used an HC-06 Bluetooth module and

an Arduino.

 17

7.0 References

[1] Tekscan Pressure Measurement System

https://www.tekscan.com/products-solutions/systems/body-pressure-measurement-system-bpms-

research

[2] Xsensor ForSite SS

https://www.xsensor.com/solutions-and-platform/csm/wheelchair-seating

[3] Blue Chip Medical Products inc. MeasureX Pressure Mapping system

https://www.bluechipmedical.com/seating-positioning/pressure-mapping-for-seating-positioning/

[4] BodiTrak2 Wireless IoT Pressure Mapping System

https://www.boditrak.com/products/medical/wheelchair.php

[5] Introduction to the viridis color maps.

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

[6] Ionic Framework, https://ionicframework.com/

[7] Heatmap.js, Patrick Wied, https://www.patrick-wied.at/static/heatmapjs/

[8] capacitor-bluetooth-serial, https://github.com/agro1desenvolvimento/capacitor-bluetooth-

serial

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://ionicframework.com/
https://www.patrick-wied.at/static/heatmapjs/
https://github.com/agro1desenvolvimento/capacitor-bluetooth-serial
https://github.com/agro1desenvolvimento/capacitor-bluetooth-serial

	Care-Mate: Wheelchair Pressure Distribution Mapping System
	Abstract
	1.0 Problem
	2.0 Objective
	3.0 Background
	3.1 Key Concepts
	3.2 Related Work

	4.0 Design
	4.1 Design Goals
	4.2 Detailed Architecture
	Frameworks and Libraries
	4.3 Risks
	4.4 Tasks
	4.5 Detailed Schedule
	4.6 Deliverables

	5.0 Key Personnel
	6.0 Facilities and Equipment
	7.0 References

