

1

University of Arkansas – CSCE Department
Capstone II – Preliminary Report – Spring 2023

AMBOTS

Stanley Van, Michael Darden, Cassandra Nelson, Alvaro Becares Fernandez

Abstract

The manufacturing industry currently uses specialized machines and factories to produce
products. This limits the flexibility of what can be produced out of one factory. New machines
are often required for new products. AMBOTS is a company using existing or developing new
technologies to break down manufacturing tasks into smaller and simpler ones. According to the
AMBOTS website [1], “AMBOTS is an advanced manufacturing company with a focus on
swarm 3D printing and assembly.” These can then be automated and coordinated by robots.
However, these robots need a way to communicate with one another. Our goal is to design and
implement a communication protocol for different third-party robotic arms to communicate with
each other to cooperatively complete a task.

We will solve this problem by breaking it down into manageable steps. First, we will
select a group of robotic arms to start with and learn how to operate these arms in ROS, MoveIt,
and RViz. After this, we will create a program that can translate G-Code files into the robotic
arms' native languages. Along with the translation program, another will be needed to allow the
separate robots to communicate with each other. Finally, we will use both previous programs to
perform a cooperative print using two separate robotic arms. When this goal is achieved, the
third-party robots will be able to communicate with each other, perform a task cooperatively, and
complete a 3D print of a file they are given.

1.0 Problem

When a new product is designed, there is often a long and expensive production process.
If one were to create a prototype of a car and work out all the design flaws, one then must deal
with the cost and issues of finding a way to produce the car on a massive scale. The answer to
that problem in today’s world is to design a factory around making that car. For several
components of the car, specific machines have to be designed and built solely for that one car.
This is an expensive and non-reusable solution that has become a massive challenge for almost
all mass-produced products today. This also causes issues for some companies in the supply
chain. It discriminates against the small guys. Because companies are so specialized on specific
things, they have to rely on the services of others who may not want to provide their services as
it may seem unprofitable to serve them. As co-founder and CTO of AMBOTS, Dr. Zhou put it,
our civilization is built on manufacturing. Any production capability we lose is bad for our

AMBOTS

 2

civilization. We cannot even reproduce the pyramids. We went to the moon and still have not
been back.

Factories are built for the product. When demand for a product decreases, we lose the
factory and the capability to produce the product. We cannot reproduce the sophisticated
production process we have here on Earth on Mars. These problems lead to the overarching goal
of AMBOTS being to create a general-purpose factory. A large obstacle to this goal is stationary
and specific machines, and AMBOTS is the pioneer of the answer. In order to rid a factory of its
need for these stationary and specific machinery, the production process is broken down to the
assignments of specific tasks to different robots. When production changes are needed, the
robots can be assigned different tasks and can move around accordingly to their new tasks. This
means that there is a need for an open ecosystem software package that can give instructions to
these kinds of robots and also support a wide variety of third-party robots. It would be
impractical to create a whole new network of robots for this, so instead, accommodating existing
robots in the industry is a more feasible and economical goal.

2.0 Objective

The objective of this project is to perform cooperative 3D printing with Industrial
Robotic Arms with ROS. This will be achieved by developing a universal printing interface such
that it is possible to control different third-party robots by integrating them into our sponsor’s
platform and cooperate with other robots for manufacturing. We will do this by designing and
implementing a communication protocol such that other third-party ROS-compatible robots can
effectively talk with our robots over a local wireless network.

3.0 Background

3.1 Key Concepts

Swarm Manufacturing [2] is a new form of manufacturing developed for future factories.
It is the employment of a swarm of different robots to manufacture products cooperatively on an
open factory floor.

A 3D printer [3] is a machine where three-dimensional models are constructed by adding
material together, typically layer by layer.

The Robot Operating System (ROS) [4] is a set of software libraries and tools that help
researchers and developers build and reuse code between robotic applications. ROS 1 has
support for real time code and embedded systems. Any code file that utilizes ROS is called a
node. Nodes have three ways of communicating. The first way is the publisher subscriber
method. The second way is through services. The third way is through actions.

MoveIt [5] is an open-source ROS package. Its basic task is to provide the necessary
trajectories for robotic arms. This allows the robotic arms to move to the right locations. There

AMBOTS

 3

are two main functions which are creating a plan and sending a plan. Known obstacles in the
robot's environment can also be added so that they can be avoided.

RViz [6] is a ROS graphical interface. It helps developers visualize and test algorithms and
design robots in a digital environment. This is important for not only efficiency but lowering cost
and safety risks. Although initially Gazebo was going to be used as the simulation environment,
RViz was chosen instead because of its ability to use markers to simulate extrusion.

Degrees of Freedom (DOF) [7] is the number of independent variables that define the
possible positions or motions of a mechanical system in space. The number of degrees of
freedom is equal to the total number of independent displacements or aspects of motion
(translational or rotational).

Linux [8] is an open-source operating system. It comes in many different distributions.
The specific distribution we will be using is Ubuntu 20.04. This is to allow the use of ROS 1.

Computer-aided design (CAD) [9] is a design of real-world objects where computers
were used in their creation. This type of design lets engineers create precise and quality models
and prototypes. There is a system of software that allows designers to simulate, analyze, and
optimize their designs.

A G-Code [10] file is a file that contains a series of instructions that 3D printers use to
create a model in the real world. These instructions tell the printer where to move, how fast to
move, and what path to follow.

A slicer [11] is software that takes a 3D object model and converts it to specific
instructions for a 3D printer. The output of a slicer is a G-Code file. The slicer interprets the 3D
models and finds a path for the 3D printer so that it can put down layers of material that will be
in the shape of the model.

Python [12] is an interpreted, object-oriented, and high-level programming language.
Python files end with the “py” file extension. It is simplistic in its syntax and comes with a
standard library of many useful functions and data structures.

The Universal Robots UR10 [13] is the largest robot in the Universal Robots
collaborative series. It has a payload up to 10 kg. It is very easy to set up and provides an
accuracy of about 0.1mm. It is ROS compatible and can be simulated in both RViz and Gazebo.

The Knova Gen3 Six Degrees of Freedom (6DOF) robotic arm [14] is a 6-axis robotic
arm. It is ROS compatible and can be simulated in both RViz and Gazebo.

PyMesh [15] is a code base used for geometric processing. It can be used with both C++
and Python. We will be using it for splitting the object we are printing into what each robotic
arm will be printing.

An STL [24] file is a file that describes an unstructured triangulated surface by their
normal unit vectors and vertices of the triangles using the Cartesian coordinate system. These
files describe the surface geometry of an object only. There are no colors, textures, or other
properties that are described in the file. This file format is typically used for CAD software.

AMBOTS

 4

3.2 Related Work

The idea of swarm manufacturing is relatively new, and according to Additive
Manufacturing [16], AMBOTS achieved the first end-to-end solution for cooperative 3d printing.
Because of this there are few other equivalent accomplishments. Instead of looking at similar
products, we can look at connected fields like both Additive Manufacturing and Swarm
Robotics. We can look at these two concepts because when combined they create swarm 3D
printing.

First, we will look at Additive Manufacturing. According to General Electric [17],
Additive Manufacturing is the use of CAD software or 3D scanners to deposit material in precise
shapes layer by layer. One company that utilizes this concept is 3D Systems [18]. The SLA 750
is one of their most recent developments. It is a “High-speed stereolithography solution for
production manufacturing.” What this means is it is a large end-to-end manufacturing machine.
It uses dual lasers and photopolymer materials. Even with these improvements to a typical 3D
printer, there is still the limitation of size. Because it is a single, enclosed machine, the product
produced must still fit inside the machine in the designated area. This defers from AMBOTS as
having mobile robotic arms in swarm printing, size is not limited to inside one specific machine.

Next, we can look at Swarm Robotics. According to Scholarpedia [19], swarm robotics is
the design of groups of robotics that operate without any interference of external infrastructure or
centralized control. Robot swarms are self-organizing. One company that utilizes this concept is
Unbox Robotics [20]. Unbox Robotics uses swarm intelligence to improve the throughput and
sorting process. Although this is helpful in the manufacturing industry, it is not manufacturing
the products themselves. It is instead just organizing them after the fact.

Finally, we will look at Rosotics [21]. Rosotics is the closest comparison to what AMBOTS is
working on. While AMBOTS is working on swarm 3d printing for end-to-end manufacturing of
a product, Rosotics is working on Rapid Induction Printing for metal additive manufacturing.
According to an article from NASA’s startup series [22], Rosotics is “a pioneer of swarm
robotics”. Although most of their work is hard to find specifics on, from this article we can
assume that they use swarm intelligence in their approach. Even knowing this, they are mostly
focusing on Rapid Induction Printing, rather than the standardization of communication between
third party robotic arms as our project will be focusing on.

4.0 Approach/Design

4.1 Requirements and/or Use Cases and/or Design Goals

The requirements for this project will include the ability to input a CAD file (STL) to the
machine and have two different robots simulate the 3D printing of the object in the CAD file.
This code should be general and be able to work on multiple different brands of robotic arm. We
are looking for universality. Initially there was a potential to add a slicer so that an object from
CAD software can be directly inputted without the prior translation to G-Code. We decided to
use a third-party slicer to do this and have included it in our software package. We had the
stretch goal of designing a slicer ourselves, but quickly realized this was not a reasonable goal to
set for ourselves.

The main usage of this end project will be mechanical engineers at AMBOTS. It will be
controlled via command line interface and will only be able to be run through Ubuntu. Because

AMBOTS

 5

of this, it will require the user to have some basic knowledge of Linux along with using a
command line. There is also the potential to transition this to use a Graphical User Interface
(GUI). This could allow for a wider range of users as they would not have to have as much
background knowledge to use the application. The main limitation of this currently is the
required system dependencies. Beyond needing a Linux operating system, ROS, MoveIt, the
robotic arms you want to use, and RViz all need to be installed and setup. We hope that our
documentation (and potential bash files) can ease this process, but it all requires understanding
how to download things via a command line.

4.2 Detailed Architecture

The overall structure of our project is shown above. Each module is explained below along with
the current implementation.

Front End:

The front end is where the initial CAD (STL) file will be uploaded. Currently this is just a CLI
(command line interface). Although it is not required, a graphical user interface will be added if
we have time. The initial CAD file will be subdivided into two separate files for each robotic arm
to print. This will be done using PyMesh. This is the step that we are currently on for this

AMBOTS

 6

module. These STL files will then be converted into G-Code using PrusaSlicer (an open-source
slicer). A script for this is already written using the CLI of PrusaSlicer. These two G-Code files
will then be sent to the Communication Hub.

Communication Hub:

The communication hub has not been implemented yet and is the current focus. The hub will
handle sending data back and forth from the robots' firmware. Our plan is to take the G-Code
from the front end, insert any necessary pause or resume commands, and then send these
commands to the firmware for each robot. Also, direct communication between different brands
of robotic arms is not currently possible. To solve this issue, any communication between robots
will also go through the communication hub.

Firmware:

The "extractGCode.py" file contains a collection of functions that open, read, and extract
G Code commands. It uses a regular expression to detect lines that start with "G". It also ensures
that the lines have no parameters or have parameters with values attached to ensure we capture
only valid G Code commands. There is a set of parameters to process the captured G Code
commands. The "extract" function takes in a parameter that is a string. The regular expression
then finds all of the matches and puts them into an array. The function then loops over the
matches. In the loop, we split each match by whitespace. We then create a hash map to assign the
parameters from our parameter set values that are present in the matched line that is of the
iteration. This hash map is then added to an array that will contain all the hash maps of all of the
matches. This array is then returned as the extracted G Code commands.

There is an "extractFile" function that takes in a filename as a parameter. This function
will open the file, call the "extract" function with the contents of the file as the parameter to the
function, and then return what the "extract" function returns.

There are default axes conversion functions named "defaultXConversion",
"defaultYConversion", and "defaultZConversion". These functions takei n a floating-point
number and return that number but converted in the space of a robotic arm. These functions are
meant to serve as placeholders. The specific implementations of these conversion functions are
in the generic Firmware class where values specific to a robotic arm are used. These functions
take in the floating-point number, normalize it, and then convert the normalized number to the
space of a robotic arm. They are called in the "convertPositions" function.

The "convertPositions" function takes in the G Code command array, an x axis
conversion function, a y axis conversion function, and a z axis conversion function as
parameters. These parameters are named "arr", "xConvert", "yConvert", and "zConvert"
respectively. The function loops through the array and calls the correct conversion function for
the axes that are present in the command. The values of the axes are replaced, and the array is
then returned.

There is also a function called "getCoordinate". It takes in a single G Code command and
returns the x, y, and z values as a python tuple. If a value of an axis is not present, the value of
None is given for that axis.

AMBOTS

 7

There is a generic firmware class named "firmware" that implements the movement and
printing of robotic arms. The constructor for this class take in parameters named "name",
"arm_group_name", "namespace", "tfPrefix", "xGcodeMax", "yGcodeMax", "zGcodeMax",
"xGcodeMin", "yGcodeMin", "zGcodeMin", "xArmMax", "xArmMin", "yArmMax",
"yArmMin", "zArmMax", "zArmMin", "xOffset", "yOffset", "zOffset", "filamentDiameter",
"maxVelocity", "xConversion", "yConversion", "zConversion", "tolerance", "filamentColor",
and "debug". If the conversion functions are not given, an instance of this class will use the
defined conversion functions within this class. The ROS MoveIt commander is initialized with
the system arguments that are passed to this class. A ROS node is created with the name
concatenated with the string "Firmware". The "marker_pub" attribute is assigned as a ROS
publisher to publish an array of markers for the simulation of 3D printing. The "marker_array"
attribute is assigned to an instance of the ROS MarkerArray class. A counter for markers is
created and set to zero for use as the IDs of the markers in the marker array. There is a flag for
when the arm is currently printing which is called "isPrinting". A ROS transform buffer and
transform listener is instantiated to get poses after they have been transformed by the transform
specified in the "bothArmsRvizLaunch.launch" file. The "robot" attribute is assigned to an
instance of the ROS RobotCommander to control the arm's description. The "scene" attribute is
assigned to the ROS PlanningSceneInterface to plan trajectories. The "arm_group" attribute is
assigned to the ROS MoveGroupCommander to execute trajectories and obtain poses of the arm
as it is in the simulation. The "display_trajectory_publisher" publishes the planned paths of the
arm. The acceleration of the arm is set to the maximum value. The arm is then made to go to the
home position. The coordinates of that position are then saved in the "homePosition" attribute.
The end effector link is saved as an attribute with the "tfPrefix" parameter appended to the left
side of the end effector link string name.The base link is saved as an attribute with the "tfPrefix"
parameter appended to the left side of the base link string name. The debug boolean will disable
the feed rate function and set the velocity of the arm to the maximum amount. This is to speed up
the simulation for testing.

There is a "reach_named_position" method that takes in a string that is the name of a
known position. The arm then plans and executes a movement to that position.

The "reach_cartesian_pose" method takes in a pose as a parameter. It first sets the
tolerance of the movement. If the arm's "isPrinting" flag is true, a constraint box will be made.
This is to force the arm to move in a straight line from one point to another. The pose for the
constraint box is also created to make the box lie along the line that connects the current
coordinate of the arm to the one that is in the given pose. An orientation constraint is then made
to keep the arm in the same orientation as the arm moves along that path. If the debug flag is set,
a visual box of where the arm is supposed to move along is created and added to the marker
array. The trajectory is then planned. If the planning fails, the constraint is removed, and the
trajectory is replanned. The arm then executes the movement. When the movement is complete,
any debugging markers are removed if the arm's debug flag is true.

The "getCurrentTransformedPose" method returns the current pose after it has been
transformed by the specified transform in the "bothArmsRvizLaunch.launch" file.

The "printMarkers" method has the parameters "prevX", "prevY", "prevZ", "nextX,
"nextY", and "nextZ". They stand for the previous x, y, z coordinates and the next x, y, and z
coordinates respectively. They have a default value of None. If they are None, they are assigned
the current value of their respective coordinate. This method will immediately return if the arm is
not printing. A start and end points are created using the given coordinates. A cylinder marker

AMBOTS

 8

with the coordinate of the midpoint of the start and end points is created. The marker is oriented
to lie along the line that connects the two points. The colors and alpha value of the filament is
then applied to the marker. The marker is then added to the array of markers, and the updated
array of markers is published to be reflected in the RViz simulation.

The "goToCoordinate" method has the parameters "homepose", "abosolutePosition", "x",
"y", and "z". The "homepose" parameter is set to the instance's "homePosition" attribute if one is
not given. The "abosolutePosition" parameter specifies whether or not to treat the coordinates as
absolute or relative coordinates. The "x", "y", and "z" parameters are the coordinate the arm will
move to. If the coordinates are absolute, the coordinates will be converted to the arm space using
the "homepose" parameter. If the coordinates are relative, the coordinates will be added to the
arm's current coordinates. The pose is then passed to the "reach_cartesian_pose" method.

The "setFeedRate" method takes in a parameter "f" which is a floating-point number. It
assigns the velocity of the arm so that the arm can print at the correct speed. It is normalized and
converted into the arm's velocity space.

There is a method called "getCoordinate". It takes in a single G Code command and
returns the x, y, and z values as a python tuple. If a value of an axis is not present, the value of
None is given for that axis.

There are custom x, y, and z conversion methods that are defined. They are called
"xConversion", "yConversion", and "zConversion" respectively. The reason for defining these
methods is that these methods will be the functions that are passed into the "convertPositions"
function to correctly convert the G Code Euclidean coordinates into the arm's coordinate space.

The Firmware class has an "executeGCode" method. This method takes in an array of
non-converted G Code commands. It first converts the G Code commands by calling the
"convertPositions" function from the "extractGCode.py" file. It then loops through each
converted command. The first step it does in each loop iteration is to get the x, y, and z values. It
then swaps the x and y values because the G Code x and y axes are swapped in relation to the
space of the arm that will use this generic firmware class. It then detects the feed rate parameter
and sets the instance's feed rate if one is found. If the command matches the criteria of it being an
extrusion command, the "isPrinting" attribute is set to true, otherwise it is set to false. The
current pose is then recorded. The "goToCoordinate" method is then called with the x, y, and z
values. After the arm has moved, the "printMarkers" method is called to place a marker that
represents the extrusion. The parameters passed to that method are the Euclidean coordinates of
the previous pose that was recorded.

The KinovaFirmware class is a subclass of the Firmware class. Thus, it inherits the
methods and attributes of the Firmware class. The KinovaFirmware class specifies the name,
arm_group_name, namespace, tfPrefix, xGcodeMax, yGcodeMax, zGcodeMax, xArmMin,
yArmMin, zArmMin, zOffset, filamentDiameter, maxVelocity, and filamentColor attributes. For
the Kinova 6DOF arm, the attributes are set to "kinova" for the name attribute, "arm" for the
arm_group_name attribute, "kinova" for the namespace attribute, "kinova" for the tfPrefix
attribute, 891 for the xGcodeMax attribute, 891 for the yGcodeMax attribute, 891 for the
zGcodeMax attribute, 0 for the xArmMin attribute, 0 for the yArmMin attribute, 0 for the
zArmMin attribute, 0.004 for the filamentDiameter attribute, 500 for the maxVelocity attribute,
and a maximum value for the red color and alpha value for the filamentColor attribute. Another
attribute is added to the class specifically for the Kinova arm. The degrees_of_freedom attribute
is set to the integer value of 6. This is because we are using the Kinova 6DOF arm which has 6
degrees of freedom.

AMBOTS

 9

The "name" attribute is set to "kinova" so that the firmware ROS node will spawn with a
name that indicates it is the node tied to the Kinova arm. The arm group name for the Kinova
arm is named "arm" which is the reason why the attribute "arm_group_name" is set to "arm".
The namespace in the launch file for the Kinova arm is set to "kinova" which is why the
namespace attribute is set to "kinova". The transform prefix in the launch file for the Kinova arm
is set to "kinova" which is why the "tfPrefix" attribute is set to "kinova". Because the Kinova
6DOF arm has a maximum reach of 891 mm, the maximum G Code values for all 3 axes are all
set to the integer 891. Because the Kinova arm has a full range of movement from a floating-
point mapping of 1.0 to -1.0, the minimum Kinova arm coordinate values for all 3 axes are all set
to the integer 0. Currently, we are experimenting with normal 3D printing filament in the
simulation. Thus, we are using 4 mm or a float value of 0.004 for the "filamentDiameter"
attribute. Because the Kinova 6DOF arm has a maximum speed of 500 mm/s, the "maxVelocity"
attribute is set to the integer value 500. We are distinguishing both of the robotic arms' filament
by their color. Thus, the Kinova arm is assigned the color red for the "filamentColor" attribute in
the simulation.

The KinovaFirmware class only has a constructor which has the parameters
"degrees_of_freedom" and "debug". The "degrees_of_freedom" parameter has a default value of
6, and the "debug" parameter has a default value of false. For the development and simulation of
the arms, we specify the "debug" parameter as true.

The kinovaFirmware python file has a main function which instantiates a
KinovaFirmware object with debug mode on. It then reads a file named "cube_kinova.gcode" in
the same directory as the kinovaFirmware python file and executes the G Code commands within
that file.

The URFirmware class is a subclass of the Firmware class. Thus, it inherits the methods
and attributes of the Firmware class. The URFirmware class specifies the name,
arm_group_name, namespace, tfPrefix, xGcodeMax, yGcodeMax, zGcodeMax, xGcodeMin,
yGcodeMin, xArmMin, yArmMin, zArmMin, xArmMin, yArmMin, zArmMin, zOffset,
filamentDiameter, maxVelocity, and filamentColor attributes. For the UR10 arm, the attributes
are set to "ur" for the name attribute, "manipulator" for the arm_group_name attribute, "ur" for
the namespace attribute, "ur" for the tfPrefix attribute, 0 for the xGcodeMax attribute, 0 for the
yGcodeMax attribute, 1200 for the zGcodeMax attribute, 1200 for the xGcodeMin attribute,
1200 for the yGcodeMin attribute, 2 for the xArmMin attribute, 1 for the yArmMin attribute, -5
for the zArmMin attribute, 6 for the xArmMin attribute 6, 5 for the yArmMin attribute, -1 for the
zArmMin attribute, 0.004 for the filamentDiameter attribute, 1000 for the maxVelocity attribute,
and a maximum value for the green color and alpha value for the filamentColor attribute.

The "name" attribute is set to "ur" so that the firmware ROS node will spawn with a name
that indicates it is the node tied to the UR10 arm. The arm group name for the UR10 arm is
named "manipulator" which is the reason why the attribute "arm_group_name" is set to
"manipulator". The namespace in the launch file for the UR10 arm is set to "ur" which is why the
namespace attribute is set to "ur". The transform prefix in the launch file for the UR10 arm is set
to "ur" which is why the "tfPrefix" attribute is set to "ur".

The UR10 arm has a maximum reach of 1300 mm. Because of our current and limited
slicer settings, the maximum G Code values for all 3 axes are 1200, which is the closest value
our slicer can handle without complete custom settings. This limits the range of the G Code
value ranges from 0 to 1200. The UR10 arm's position in the simulation environment causes
some of the axes of the G Code with respect to the arm to be flipped. This is the cause for setting

AMBOTS

 10

the attributes xGcodeMax and yGcodeMax to zero instead of 1200 and for setting the attributes
xGcodeMin and yGcodeMin to be set to 1200 instead of zero. The z axis for the G Code is
unaffected, and thus, the zGcodeMax attribute is set to 1200. The UR10 arm has a range of
movement on the x axis from a floating-point mapping of 0.0 to 12.0. We only use a limited
section of this which is why the xArmMax attribute is set to 2, and the xArmMin attribute is set
to 6. The UR10 arm has a range of movement on the y axis from a floating-point mapping of -6
to 6. We only use a limited section of this which is why the yArmMax attribute is set to 1, and
the yArmMin attribute is set to 5. The UR10 arm has a range of movement on the z axis from a
floating-point mapping of -6 to 6. We only use a limited section of this which is why the
zArmMax attribute is set to -5, and the yArmMin attribute is set to -1. The z axis in the UR10
arm space is flipped which is the reason for the negative signs. Currently, we are experimenting
with normal 3D printing filament in the simulation. Thus, we are using 4 mm or a float value of
0.004 for the "filamentDiameter" attribute. Because the UR10 arm has a maximum speed of
1000 mm/s, the "maxVelocity" attribute is set to the integer value 1000. We are distinguishing
both of the robotic arms' filament by their color. Thus, the UR10 arm is assigned the color green
for the "filamentColor" attribute in the simulation.

The URFirmware class only has a constructor which has the parameter "debug". The
"debug" parameter has a default value of false. For the development and simulation of the arms,
we specify the "debug" parameter as true.

The urFirmware python file has a main function which instantiates a URFirmware object
with debug mode on. It then reads a file named "cube_ur.gcode" in the same directory as the
urFirmware python file and executes the G Code commands within that file.

Firmware UML (Unified Modeling Language) Diagram:

AMBOTS

 11

AMBOTS

 12

RViz:

For simulation in RViz, we have launch files to spawn the arms and execute arm
movements. To get both of our chosen arms in the same RViz environment, we have a launch
script named “bothArmsRvizLaunch.launch”. In it there is a namespace called "ambots" that
separates our package from all of the other packages on the system our software will run on. We
declare the arguments “use_gui”, “arm”, “dof”, “vision”, and “sim” for use with the Kinova
arm's namespace section.

There are two sub-namespaces. One is called "kinova" for the Kinova 6DOF arm, and the
other is called "ur" for the UR10 arm. Inside each of the sub-namespaces, we set their "tf_prefix"
parameter to their respective names which are "kinova" and "ur". There is a static transform
publisher for both of them. For the Kinova arm, the transform does nothing. For the UR10 arm,
the transform moves it along the x axis for 1.5 meters and rotates it using a quaternion so that it
is facing backwards in the direction it was moved along the x axis. This causes the UR10 to be
placed in the correct location facing the correct direction, but it will be upside down. The
quaternion will also rotate the arm around the x axis so that it is facing with the right side up.
Then each sub-namespace finds the model file, which is an xacro file, for each arm and loads it
as the "robot_description" parameter. The joint state publisher nodes for each arm are loaded as
well as the robot state publisher nodes. These nodes handle the state and pose of the arms. At the
end of the sub-namespaces is the loading of the "move_group.launch" file. This is what lets the
firmware for each arm control the simulation arms. Outside of the sub-namespaces and at the end
of the launch file is the RViz node that loads the RViz simulation environment window. The
"kinematics.yaml" files for each arm are called to ensure the arms will have movement in the
environment.

For launching the firmware of the Kinova arm, there is the "kinovaFirmware.launch" file.
This file sets the namespace for the firmware as "ambots/kinova". The reason for the inclusion of
"ambots" is that there is a global namespace of "ambots" in the “bothArmsRvizLaunch.launch”
file. The node "kinovaFirmware" is then spawned which executes the "kinovaFirmware.py" file.
The namespace of this launch file is also passed to the "kinovaFirmware.py" file.

For launching the firmware of the UR10 arm, there is the "urFirmware.launch" file. This
file sets the namespace for the firmware as "ambots/ur". The reason for the inclusion of "ambots"
is that there is a global namespace of "ambots" in the “bothArmsRvizLaunch.launch” file. The
node "urFirmware" is then spawned which executes the "urFirmware.py" file. The namespace of
this launch file is also passed to the "urFirmware.py" file.

The currently included G Code files in our repository have zero infill. This is to speed up
the testing of the arm movements and the simulation of printing.

Preliminary Results:

AMBOTS

 13

Lessons Learned:

One of the main lessons learned so far is to ask specific questions from the sponsor as
soon as possible. It is important to get a clear understanding of the minimum end goal,

AMBOTS

 14

reasonable end goal, and stretch end goal. It is also important to know if they already have a
structure in mind, or even specific packages that they already use that would be good to use in
the project. Overall being overly communicative is imperative to the success of the project.

Another lesson learned was to split up tasks extremely small. This was encouraged
throughout the last semester, but we could have simplified the tasks even more. This would help
with a more even distribution of tasks among team members. Having team check-ins at least two
times every week would also help with accountability and to solve any problems members may
be stuck on.

Potential Impact & Future Work:

This project's potential impact is for AMBOTS to use multiple different robotic arms
from different brands in their research and products. This allows for collaborative printing
without having to develop a whole network of new robotic arms, which is impractical and
inefficient. Being able to use 3rd part robotic arms allows for flexibility in the development of
new ideas in additive manufacturing.

There is a lot of potential for future work on this project. Looking at the first module (the

front end) we currently are just splitting the CAD file in half for the two robotic arms we are

using. Although this works for a proof of concept, you ideally want to be cutting the object based

on what is the most efficient for the robotic arms. You also want to be able to use any number of

robotic arms depending on what you have available. Our sponsor, Dr. Zhou, mentioned that

AMBOTS is working on an algorithm that will decide which robotic arm prints what. This isn’t

just important for our front end but extends into the communication hub. Our communication is

just pause and resume commands not necessary to print our object. If the two arms are printing

more intricate pieces, the communication between robotic arms will be much more pertinent.

This project currently uses two robotic arms. Although this is good as they are different

brands and it is important to see how using arms from different brands impacts the set-up and

communication of the arms, ideally an undetermined number of arms will be used. Currently the

firmware model is implemented to make the setup of additional robotic arms as easy as possible.

By creating a firmware class, a new arm can be implemented relatively easily. A launch file will

also have to be created.

Another future development that could be added is creating a custom slicer. This project
utilizes PrusaSlicer which is an open-source slicer. Our sponsor, Dr. Zhou, mentioned how they
would like to have their own slicer and not rely on PrusaSlicer.

4.3 Risks

Risk Risk Reduction

Network Security Using an isolated network that is not connected to the
internet along with utilizing encryption and/or a firewall.

Physical Safety Practice general lab safety and initially everything will be
done via simulation.

AMBOTS

 15

4.4 Tasks

1. Research ROS, MoveIt, and Gazebo. When researching, a decision should be made on which
version of ROS will work best with this specific project. This will help in the decision made in
the second task.

2. Research Robotic arm options and select two arms of different brands. This decision should
consider the version of ROS chosen. The robotic arm should support the utilization of RViz and
should preferably have vast documentation to make the learning process smooth.

3. Document set up of ROS, MoveIt, the robotic arms, and the Ubuntu environment. The version
of Ubuntu used will depend on the version of ROS. This setup will take some time as each
robotic arm has a different launch process. Each member of the team should have both robotic
arms simulated on their machine once this step is done. The documentation will be organized in
a GitLab for future usage.

4. Research how each of the chosen robotic arms receive commands. In order to successfully
implement communication and printing, the chosen robotic arms need to be better understood.
Each brand of robotic arm has its own native language. We will research how the individual
arms receive movement commands and how they utilize MoveIt to calculate the trajectories
necessary to end at given positions.

5. Simulate basic movement of robotic arm choices in RViz. This will include looking into the
launch file (typically launch.py) of each arm. To verify that we have set up the robotic arms
correctly we will simulate them in RViz. Initially in step three they will be simulated in RViz as
that is what the setup instructions have examples for when using ROS and Moveit.

6. Research G-Code. An object that is to be printed will be provided via an STL file. This STL
file will be imported into a slicer and a G-Code file will be exported.

7. Download and use slicer to create G-Code file. We will use PrusaSlicer [24], which is an
open-source slicer that can be run via command line. A batch file that takes in an STL file will
then be created for easier use.

8. Pipe G-Code files to the robotic arms by creating a program to translate from G-Code file to
robotic arms’ native language. The G-Code file will be parsed, and the coordinates will be
extracted. These coordinates will then be translated into the robotics arms’ native language for
each robotic arm respectively.

9. Simulate the G-Code movement of robotic arm choices in RViz using basic G-Code files. This
is the process to make sure the program created in step 8 works. The program can then be
debugged and improved upon.

10. Find and set up a concrete or material extruder for both robotic arms. Preferably a concrete
extruder will be found, but because this is a simulation and not an actualized project, a generic
material extruder is an acceptable replacement.

AMBOTS

 16

11. Simulate printing using the extruder in RViz. While the robotic arm is moving using the
coordinates from the G-Code file, the extruder should begin simulating extruding. This is to
prepare for the collaborative printing process. This should be done with both robotic arms.

12. Run both robotic arms in the same environment. Up until this point the robotic arms will be
run in separate environments. Although on the same machine they will not be run in the same
instance. This will be a process of figuring out how to have the robots running simultaneously
and will allow for communication to happen in future steps.

13. Use ROS to communicate between two arms (One moves then tells the other to begin
moving). In order to allow for collaboration between the robotic arms, ROS will be used.

14. Simulate simultaneous printing with the robotic arm choices in RViz using ROS
communication. This last task is the culmination of all the previous tasks. The extruders
simulated in task 11 will be used to simulate the printing process and the communication in tasks
13 will be used in the collaboration between robotic arms.

4.5 Schedule

Tasks Dates

1. Research ROS, MoveIt, and Gazebo 11/07 - 11/14

2. Research Robotic arm options and select two arms of
different brands

11/14 - 11/21

3. Document set up of ROS, MoveIt, the robotic arms, and the
Ubuntu environment

11/21 - 12/05

4. Research how each arm receives commands 12/05 - 12/12

5. Simulate basic movement of robotic arm choices in RViz 12/12 - 12/26

6. Research G-Code 12/26 - 01/02

7. Download and use slicer to create G-Code file 01/02 - 01/09

8. Pipe G-Code files to the first robotic arm by creating a
program to translate from a G-Code file to robotic arms’ native
language

01/09 - 01/23

9. Pipe G-Code files to the second robotic arm by creating a
program to translate from a G-Code file to robotic arms’ native
language

01/23 - 02/06

10. Simulate the G-Code movement of robotic arm choices in
RViz using basic G-Code files

02/06 - 02/13

11. Find and setup a concrete or material extruder for each
robotic arm

02/13 - 02/20

12. Simulate printing using the extruder in RViz 02/20 - 03/06

13. Run both robotic arms in the same environment 03/06 - 03/20

AMBOTS

 17

14. Use ROS to communicate between the two robotic arms. 03/20 - 04/03

15. Simulate simultaneous printing with the robotic arm choices
in RViz using ROS communication

04/03 - 04/24

4.6 Deliverables

• Research: Throughout the development process, research is done on the different
software to be used. The research will be collected into one coherent document for. better
understanding of what was learned.

• Documentation: With all the code written, there will be documentation explaining how it
works, and why choices were made.

• Software package for ROS2 robotic arm control: This is the collection of software that is
used and/or created to complete the goal of simultaneous robotic arm 3D printing. It will
be in the form of three modules: Frontend, Communication Hub, and Firmware.

• Tutorial for setting up and working with the software package: To simplify the process, a
complete tutorial will be created for not only the setup of the machine to run the
necessary programs, but also the process of running the software produced through this
project.

• Final zip file: The final zip file required for the class. This will include a report
summarizing the process and implementation of the project along with all the code
written.

5.0 Key Personnel

Stanley Van – Van is a senior Computer Science major in the Computer Science and Computer
Engineering Department at the University of Arkansas. He has completed the relevant courses
Software Engineering, Database Management Systems, Programming Paradigms, Operating
Systems, and Computer Networks. This student will be responsible for making the G-Code file
reader for the ROS nodes and piping the G-Code files to the robots along with any other tasks
that need extra assistance.

Cassandra Nelson– Nelson is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. She has completed relevant
courses up to and including Database Management, Programming Paradigms, and Software
Engineering. She held a C-Unix Programmer Analyst Intern position, and currently works as a
Computer Support Assistant at the CORD on the University of Arkansas campus. Nelson will be
responsible for the Frontend module, documentation, and any other tasks that need extra
assistance.

Michael Darden– Darden is a senior Computer Science major in the Computer Science and
Computer Engineering Department at the University of Arkansas. He has completed relevant
courses such as Programming Foundations one and two, Programming Paradigms, Computer
Organization, Software Engineering, Computer Networks, and Discrete Mathematics. He has
interned at Clear C2 for the summers of 2020, 2021, and 2022. Clear C2 is a web development
company that creates costumer recourse management tools for other businesses. This student will

AMBOTS

 18

be responsible for setting up the environments and simulations of the robots. This includes
development in ROS to adapt the environments to support the different types of robots.

Alvaro Becares Fernandez– Becares is a senior Telematics Engineering major in the

Telematics Engineering Department at the University Carlos III of Madrid, currently an

exchange student at the University of Arkansas. He has completed relevant courses such as

Artificial Intelligence, and Big Data Analytics and Management. Becares will be responsible for

compiling research done along with any other tasks that need extra assistance.

Dr. Wenchao Zhou– Dr. Zhou is an associate professor in the Mechanical Engineering
department at the University of Arkansas. He is the co-founder and Chief Technology Officer of
AMBOTS. After receiving his PhD in Mechanical Engineering from the Georgia Institute of
Technology, he has participated in research that led to the publication on swarm manufacturing
cited previously in this proposal [2] along with others not mentioned in this report.

Zachary Hyden – Hyden received a bachelor's degree in mechanical engineering from the
University of Arkansas in 2019. He is now the Chief Mechanical Engineer at AMBOTS. During
his undergraduate education he was an Additive Manufacturing Researcher in the AM^3 lab at
the University of Arkansas.

6.0 Facilities and Equipment

Because this project will be developed using simulation software, there will not be any
facility usage required. The funding required to acquire the robotic arms is estimated to not
arrive within the time period of the development and completion of the project. This is another
reason that facility usage is not required. As for equipment, each member will be using a
computer with Ubuntu installed and running on a virtual machine or natively as the operating
system. Although there is a potential for this project to move to the physical lab, initially
everything will be developed through simulation. It is then up to the sponsor whether to actualize
our solution in their lab in the future.

AMBOTS

 19

7.0 References

[1] AMBOTS, https://www.ambots.net/

[2] Poudel, L., Marques, L. G., Williams, R. A., Hyden, Z., Guerra, P., Fowler, O.L., Sha, Z.,
and Zhou, W. (February 16, 2022). “Toward Swarm Manufacturing: Architecting a Cooperative
3D Printing System.” ASME. J. Manuf. Sci. Eng. August 2022; 144(8): 081004.
https://doi.org/10.1115/1.4053681

[3] 3D printing, https://en.wikipedia.org/wiki/3D_printing

[4] ROS, https://www.ros.org/

[5] MoveIt, https://moveit.ros.org/

[6] RViz, https://www.stereolabs.com/docs/ros/rviz/

[7] Investopedia, https://www.investopedia.com/terms/d/degrees-of-freedom.asp

[8] Linux, https://www.linux.com/what-is-linux/

[9] TechTarget, https://www.techtarget.com/whatis/definition/CAD-computer-aided-design

[10] G-code, https://en.wikipedia.org/wiki/G-code

[11] Slicer (3D printing), https://en.wikipedia.org/wiki/Slicer_(3D_printing)

[12] What is Python? Executive Summary, https://www.python.org/doc/essays/blurb/

[13] UR10, https://wiredworkers.io/product/ur10/

[14] Kinova Robotics, https://www.kinovarobotics.com/product/gen3-robots

[15] PyMesh, https://github.com/PyMesh/PyMesh

[16] Additive Manufacturing, https://www.additivemanufacturing.media/articles/robots-
assemble-a-new-path-to-autonomous-mobile-3d-printing

[17] General Electric, https://www.ge.com/additive/additive-manufacturing

[18] 3D Systems, https://www.3dsystems.com/3d-printers/sla-750

[19] Scholarpedia, http://www.scholarpedia.org/article/Swarm_robotics

[20] Unbox Robotics, https://unboxrobotics.com/

[21] Rosotics, https://www.rosotics.com/

[22] NASA, https://technology.nasa.gov/virtual-event/startup-nasa-series-rosotics-inc

[23] PrusaSlicer, https://www.prusa3d.com/page/prusaslicer_424/

[24] STL (file format), https://en.wikipedia.org/wiki/STL_(file_format)

https://www.ambots.net/
https://doi.org/10.1115/1.4053681
https://en.wikipedia.org/wiki/3D_printing
https://www.ros.org/
https://moveit.ros.org/
https://www.stereolabs.com/docs/ros/rviz/
https://www.investopedia.com/terms/d/degrees-of-freedom.asp
https://www.linux.com/what-is-linux/
https://www.techtarget.com/whatis/definition/CAD-computer-aided-design
https://en.wikipedia.org/wiki/G-code
https://en.wikipedia.org/wiki/Slicer_(3D_printing)
https://www.python.org/doc/essays/blurb/
https://wiredworkers.io/product/ur10/
https://www.kinovarobotics.com/product/gen3-robots
https://github.com/PyMesh/PyMesh
https://www.additivemanufacturing.media/articles/robots-assemble-a-new-path-to-autonomous-mobile-3d-printing
https://www.additivemanufacturing.media/articles/robots-assemble-a-new-path-to-autonomous-mobile-3d-printing
https://www.ge.com/additive/additive-manufacturing
https://www.3dsystems.com/3d-printers/sla-750
http://www.scholarpedia.org/article/Swarm_robotics
https://unboxrobotics.com/
https://www.rosotics.com/
https://technology.nasa.gov/virtual-event/startup-nasa-series-rosotics-inc
https://www.prusa3d.com/page/prusaslicer_424/
https://en.wikipedia.org/wiki/STL_(file_format

	AMBOTS
	Abstract
	The manufacturing industry currently uses specialized machines and factories to produce products. This limits the flexibility of what can be produced out of one factory. New machines are often required for new products. AMBOTS is a company using exist...
	We will solve this problem by breaking it down into manageable steps. First, we will select a group of robotic arms to start with and learn how to operate these arms in ROS, MoveIt, and RViz. After this, we will create a program that can translate G-C...
	1.0 Problem
	2.0 Objective
	3.0 Background
	3.1 Key Concepts
	Swarm Manufacturing [2] is a new form of manufacturing developed for future factories. It is the employment of a swarm of different robots to manufacture products cooperatively on an open factory floor.
	The Robot Operating System (ROS) [4] is a set of software libraries and tools that help researchers and developers build and reuse code between robotic applications. ROS 1 has support for real time code and embedded systems. Any code file that utilize...
	MoveIt [5] is an open-source ROS package. Its basic task is to provide the necessary trajectories for robotic arms. This allows the robotic arms to move to the right locations. There are two main functions which are creating a plan and sending a plan....
	Linux [8] is an open-source operating system. It comes in many different distributions. The specific distribution we will be using is Ubuntu 20.04. This is to allow the use of ROS 1.
	Computer-aided design (CAD) [9] is a design of real-world objects where computers were used in their creation. This type of design lets engineers create precise and quality models and prototypes. There is a system of software that allows designers to ...
	A G-Code [10] file is a file that contains a series of instructions that 3D printers use to create a model in the real world. These instructions tell the printer where to move, how fast to move, and what path to follow.
	A slicer [11] is software that takes a 3D object model and converts it to specific instructions for a 3D printer. The output of a slicer is a G-Code file. The slicer interprets the 3D models and finds a path for the 3D printer so that it can put down ...
	Python [12] is an interpreted, object-oriented, and high-level programming language. Python files end with the “py” file extension. It is simplistic in its syntax and comes with a standard library of many useful functions and data structures.
	The Universal Robots UR10 [13] is the largest robot in the Universal Robots collaborative series. It has a payload up to 10 kg. It is very easy to set up and provides an accuracy of about 0.1mm. It is ROS compatible and can be simulated in both RViz a...
	The Knova Gen3 Six Degrees of Freedom (6DOF) robotic arm [14] is a 6-axis robotic arm. It is ROS compatible and can be simulated in both RViz and Gazebo.
	PyMesh [15] is a code base used for geometric processing. It can be used with both C++ and Python. We will be using it for splitting the object we are printing into what each robotic arm will be printing.
	An STL [24] file is a file that describes an unstructured triangulated surface by their normal unit vectors and vertices of the triangles using the Cartesian coordinate system. These files describe the surface geometry of an object only. There are no ...
	3.2 Related Work

	4.0 Approach/Design
	4.1 Requirements and/or Use Cases and/or Design Goals
	The requirements for this project will include the ability to input a CAD file (STL) to the machine and have two different robots simulate the 3D printing of the object in the CAD file. This code should be general and be able to work on multiple diffe...
	4.2 Detailed Architecture
	4.3 Risks
	4.4 Tasks
	1. Research ROS, MoveIt, and Gazebo. When researching, a decision should be made on which version of ROS will work best with this specific project. This will help in the decision made in the second task.
	2. Research Robotic arm options and select two arms of different brands. This decision should consider the version of ROS chosen. The robotic arm should support the utilization of RViz and should preferably have vast documentation to make the learning...
	3. Document set up of ROS, MoveIt, the robotic arms, and the Ubuntu environment. The version of Ubuntu used will depend on the version of ROS. This setup will take some time as each robotic arm has a different launch process. Each member of the team s...
	4. Research how each of the chosen robotic arms receive commands. In order to successfully implement communication and printing, the chosen robotic arms need to be better understood. Each brand of robotic arm has its own native language. We will resea...
	5. Simulate basic movement of robotic arm choices in RViz. This will include looking into the launch file (typically launch.py) of each arm. To verify that we have set up the robotic arms correctly we will simulate them in RViz. Initially in step thre...
	6. Research G-Code. An object that is to be printed will be provided via an STL file. This STL file will be imported into a slicer and a G-Code file will be exported.
	8. Pipe G-Code files to the robotic arms by creating a program to translate from G-Code file to robotic arms’ native language. The G-Code file will be parsed, and the coordinates will be extracted. These coordinates will then be translated into the ro...
	9. Simulate the G-Code movement of robotic arm choices in RViz using basic G-Code files. This is the process to make sure the program created in step 8 works. The program can then be debugged and improved upon.
	13. Use ROS to communicate between two arms (One moves then tells the other to begin moving). In order to allow for collaboration between the robotic arms, ROS will be used.
	4.5 Schedule
	4.6 Deliverables

	5.0 Key Personnel
	6.0 Facilities and Equipment
	7.0 References

