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Abstract 

At the current growth in population, we will soon exceed the planet’s non-renewable resource 

availability. This vast difference between demand and supply necessitates a new source for 

scarce minerals: space. As we explore the final frontier, we face a critical challenge: how to 

extract the minerals we need to sustain our civilization without destroying our planet. For these 

extraterrestrial mining expeditions, mankind must apply advanced technology to develop lunar 

robots to kickstart the era of space mining. The objective of this project is to engineer and 

program a robotic lunar excavator for the NASA Lunabotics competition that will maneuver 

through complex, rough terrain and mine regolith simulants. As the CSCE section of the NASA 

Robot Mining Competition Capstone team, our focus is on the software and computer system 

aspects of the project through simulation and physical testing to achieve semi-autonomous 

function. Our team will take a collaborative approach, leveraging the diverse skills and expertise 

of team members from multiple departments. We will use an agile development methodology to 

iteratively design, build, and test our excavator, and will use ROS 2 to integrate our software and 

hardware components. By using a combination of simulation and physical testing, we will 

optimize our robot's performance and ensure that it meets the demands of the Lunabotics 

competition. A key aspect of the maneuverability of the robot is position-tracking which will use 

a combination of accelerometer measurements and camera object detection. With a dataset of 

possible field elements and regoliths, we may train a model using modern object detection 

libraries to facilitate autonomous navigation so the robot can safely mine. This project’s 

significance lies in both the direct cross-department learning opportunities as well as the general 

impact this field of technology will have on our planet’s future. Working in unison with the 

University of Arkansas’ Razorbotz team highlights the significance of multifaceted engineering 

projects and the breadth of knowledge required to reach an acceptable product. The robot and its 

programming we plan to produce are the foundation for future Lunar and Martian mining 

expeditions to help alleviate Earth’s resource exhaustion and environmental damage from current 

resource extraction. 
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1.0 Problem 

At the rate at which Earth’s population is consuming non-renewable resources, mankind will not 

be able to sustain its growing population [18]. One of the options mankind has been looking into 

is searching for resources off-planet. A prime candidate due to its proximity and signs of 

resources such as water and Helium-3 is the moon which led NASA to create the Artemis 

program [19]. NASA’s Artemis program plans to establish the first human presence on the moon 

since the 1972 Apollo 17 mission. These plans include the development of a lunar base camp 

which would possibly be built in Shackleton Crater due to its suspected access to ice and 

minerals. There are many concerns with the Artemis missions, especially surrounding the 

sustainable deployment of humans to the moon. It is both dangerous and expensive to send 

people to the moon with each pound of commercial cargo costing anywhere from $9,100 to 

$43,180 [20]. This is one of the main reasons behind the development of and demand for 

precursor lunar robots. To facilitate human travel to the moon, Mars, and other extra-terrestrial 

sites, we need to engineer efficient robots that can accomplish the pre-requisite task of mining 

and research. This is where the problem that our project, the Lunabotics competition, and the 

NASA Artemis program all hope to address arises. 

Lunar vehicles have been in the works since the 1950s and experienced a huge increase in 

development in the 1960s thanks to the Space Race between the US and the USSR during the 

Cold War. As NASA went through many iterations of lunar robots, the expectations rose from 

travel and navigation to mining, on-site research, and continuous exploration. A key problem 

with deploying robots in space is their dependence on manual control. For a radio signal to reach 

the moon, it can take several seconds which does not seem like much but to reach a robot on 

Mars from Earth, it can take around 7 minutes [21]. Because of this time delay, human control 

would be difficult and possibly dangerous for the robot since any decisions/movements made 

from Earth would be anywhere from 7-20 minutes delayed. This is where the development of 

robust autonomy for lunar and martian robots becomes crucial. As such, NASA’s Artemis 

Student Challenge was created to be a college-level competition where teams must engineer the 

most efficient robot that can reliably navigate and mine the simulated lunar environments. 

The importance of developing an efficient semi-autonomous robot for space mining and 

exploration grows with every second. This challenge is something that NASA has been trying to 

solve for several decades and mankind is rapidly approaching a deadline. The impact of not 

solving this problem of efficient precursor lunar robots is the exhaustion of resources on Earth 

and the growth in environmental risks of our current on-planet mining. Our current mining 

processes for rare-earth metals are causing contamination of air, water, and soil due to leaching 

chemicals and toxic waste [22]. If mankind can’t rapidly reduce its consumption of the resources 

in question and the environmental consequences of their extraction, we will only be digging our 

graves. To combat our growing population and resource demands, off-planet mining becomes 

almost necessary and so the challenge of researching and developing the most efficient and 

inexpensive mining robots is imperative. 

2.0 Objective 

The primary objective of this project is to design, engineer, and program a semi-autonomous 

robotic lunar excavator for the NASA Lunabotics competition that can effectively maneuver 
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through complex, rough terrain and extract regolith simulants with high accuracy and efficiency. 

Specifically, we will develop a multifaceted control schema that combines autonomous and 

manual functionalities. Our team will achieve this objective through the integration of advanced 

sensors, robust software, and hardware components that enable the excavator to detect, navigate, 

and excavate the regolith safely and reliably. 

3.0 Background 

3.1 Key Concepts 

3.1.1  Object Detection 

The latest advancement in artificial intelligence has allowed us to solve previously difficult 

problems.  One such task is object detection, which can be described as the task of detecting 

individual instances of various objects found within an image or a video and classifying them 

correctly [12]. It is one of the most pertinent challenges in computer vision, as many problems in 

the field require object detection to accomplish various other tasks such as pose estimation, 

image segmentation, etc. There are a lot of factors that have allowed us to finally start solving 

this task. Firstly, hardware has improved to the point where we can implement multilayer 

perceptrons, which can be thought of as neurons represented in a computer. Multilayer 

perceptrons were first theorized during the 1950s [13], however, it was impossible to implement 

them efficiently with the technology at the time. With the rapid improvement of technology 

during the 21st century, we've finally achieved implementation. The reason why perceptrons are 

so important is that we can solve problems without having to explicitly code for them. Rather, 

we use data that we know the results of and allow the computer to come up with a function or a 

model so that it can solve this problem on its own. This is because a perceptron will fire if the 

inputs scaled by a weight manage to exceed a threshold amount [14]. The computer can solve 

problems based on the perceptrons that fire, thereby creating solutions to a new set of problems 

that were previously hard or impossible to solve. A model might take many perceptrons to solve 

harder tasks, and they are organized into layers, where each perceptron takes input from the 

previous layer [14]. A crucial part of using such models is to have a dataset that it can run over 

so that the model can optimize the amount by which the inputs are scaled such that the model 

outputs the correct result. Each incorrect answer will further optimize the model by shifting the 

scaling factor by a small amount, eventually converging at an optimal value so that the model is 

accurate for the training data [14]. It is also important to test the model on randomized data to 

ensure that the model can accurately predict the output to various kinds of input rather than 

overfitting to the training dataset [15].  

While multilayer perceptrons are very good at solving rudimentary tasks, we will need 

something more complex to solve tasks such as object detection efficiently and accurately. This 

is where the idea of a Convolutional Neural Network comes in. Essentially, we will have certain 

layers in the network which will convolve a kernel matrix with portions of the input data. These 

layers will extract the various features of the input, therefore, allowing the model to classify 

these features. In these layers, the kernel matrix is optimized so that the model extracts the 

features correctly [16]. This method is commonly used in object detection and implementations 

often try to maximize speed or precision. Oftentimes, these are inversely related as faster models 

tend to be less precise. A primary drawback of these models is that they require lots of data to 
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predict the answer accurately. Additionally, training some of the more complex models takes a 

long time and requires lots of calculations. One of the best datasets for the object detection task 

is Microsoft’s COCO dataset, which is a joint project by many companies and universities to 

classify various objects in everyday scenes that anyone can use to train a model [17]. A popular 

library to implement these Deep Learning concepts is PyTorch [9]. 

3.1.2  Client-Server Communication 

Client-server communication is commonly used when one system cannot access the resources of 

another system. It allows a system to share necessary information with another so that each 

system does not have to store duplicate information. In this relationship, there is a client and a 

server as the name implies. The client is primarily responsible for requesting and receiving 

information, while the server is responsible for handling this request and responding with the 

appropriate information. One way this is accomplished is through the Transmission Control 

Protocol (TCP) [23]. This allows the client and server to first establish a connection before 

transmitting data to ensure the information requested is sent and received to the correct 

destination. First, the client sends an initial request to begin this connection. Second, the server 

acknowledges the request so that the client knows a connection is being established. Next, the 

client sends an acknowledgment of the connection so that the server knows to begin transmitting 

the data. TCP connections may persist for future communication, however, they are commonly 

terminated due to the number of requests many servers receive. In the case where the connection 

persists, information can continue to flow from the server to the client with no interruptions. In 

the case where the connection is terminated, the connection must be reestablished later before 

more data may be transmitted [24]. The application of this Client-Server model is useful in many 

multi-system technical methods such as transmitting control signals for motors or publishing 

images from a camera. 

3.1.3 Controller Area Network (CAN bus) 

The Controller Area Network (CAN bus) is a communication protocol that allows multiple 

electronic devices to exchange data in real-time, even in challenging environments. It utilizes a 

two-wire system with a resistor on each end (Figure 1) that facilitates simultaneous 

communication among devices on the network using dominant and recessive signals.  

 

Figure 1 - CAN bus 

Data transmission is carried out using a message-based system, with each message comprising a 

unique identifier and up to eight bytes of information. The identifier determines message 

priority, ensuring that those with higher priority are transmitted first and given more bandwidth, 
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making efficient and effective control of various subsystems critical in managing complex 

electronic systems. The CAN bus is distinguished by its sophisticated error detection and 

correction mechanisms. The cyclic redundancy check (CRC) mechanism verifies data integrity 

by identifying and rejecting errors and notifying the sender to resend the message. This feature 

significantly reduces the likelihood of data corruption, improving electronic systems' overall 

reliability and safety. The CAN bus is widely used in modern vehicles and industrial automation 

systems, enabling real-time subsystem communication. Its resilience, error detection and 

correction capabilities, and priority-based message transmission make it a dependable solution 

for managing complex electronic systems. The CAN bus enhances safety and performance for 

various applications by transmitting data quickly and precisely [29]. 

3.1.4  ROS 2  

Robot Operating System 2 (ROS 2) is an immensely powerful framework for building 

distributed robotic systems. One of its core features is the ROS graph, which organizes the 

various data processing elements that make up the robot's operating system. The ROS nodes are 

at the heart of the ROS graph, representing individual executables responsible for specific 

modular purposes. Nodes communicate with each other through a variety of mechanisms, 

including topics, services, actions, and parameters. Topics are a convenient way to transfer data 

between nodes in a ROS 2 system. They operate on a publisher-subscriber policy, allowing 

nodes to publish and subscribe to data on a shared topic. For instance, a temperature sensor node 

can publish temperature data to a topic named "temperature," while other nodes subscribe to the 

same topic to receive the temperature data. Topics can have multiple publishers and subscribers, 

making sharing information across the ROS graph simple. Another mechanism for data transfer 

in ROS 2 is services, which operate on a call-and-response model. Unlike topics, services have 

only one node acting as the server, while multiple nodes can be clients. For example, a service 

node can provide data only when a client node requests. This model is similar to the client-server 

communication described earlier. ROS 2 also supports actions and parameters, which provide 

additional flexibility for building distributed robotic systems. Actions allow nodes to perform 

long-running goals in a non-blocking way, while parameters provide a mechanism for storing 

and sharing data between nodes. By leveraging these various mechanisms, ROS 2 enables 

developers to build complex, sophisticated robotic systems [11]. 

3.2 Related Work 

3.2.1  Servi Robots 

Service robots are becoming increasingly more common with the advancement of artificial 

intelligence. The robot which we are programming, at a high level, should be able to drive itself 

to a location while avoiding obstacles to do a certain task, and then return to where it started. 

This is closely related to a recent development from Bear Robotics partnered with Softbank 

Robotics. They created a service robot, called Servi, which autonomously delivers food to 

customers in a restaurant as well as busses tables [1]. This Robot as a Service (RaaS) allows 

businesses to replace existing employees with a much cheaper and seemingly more reliable 

option, or add the robot to their staff. This is related to the robot which we are programming 

because Servi, at a high level, drives itself to a table, does some task whether it be to serve 

customers or bus the table, and drives itself back to where it started all while avoiding obstacles. 
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Although this is a good solution to the inconvenience that having a human employee can cause, 

it is not a perfect solution. The Servi robot is simply a moving tray. Some human intervention is 

still needed for it to operate how it was intended to. People still need to load and unload it, and 

while bussing is an ability that Bear and Softbank are advertising it can do, it can only hold the 

dishes, not pick them up. The robot we are programming should be able to do all of its tasks 

without any human intervention. When it gets to its location, it will dig up rocks and store them 

without needing the help of humans.  

Autonomous robots will likely replace many humans in a lot of different fields of work. They 

have great benefits for many industries due to their productivity and precision. With a precise 

robot, there are next to no human errors that can occur which would decrease efficiency or set 

back a company. Transporting goods is the most relevant task where we can see the potential of 

autonomous robots. Not only can the robot be a solution for human error, but it can also result in 

more safety for humans. With regards to having an autonomous robot mine on worlds other than 

Earth, the benefits of autonomous robots become even more apparent. Instead of having a human 

go into space and mine by hand, NASA can send a robot or even a group of robots to do the 

same thing faster without the risk of the human being harmed or becoming fatigued and less 

efficient. There are some obvious concerns when replacing humans with robots. There is always 

the possibility that the robot does not work the way it was intended to. If this should happen, then 

it can cost a company a potentially very large amount of money, it can slow down progress, or it 

can even put humans at risk if they are working around the robot if it were to fail. The solution to 

this is to test the robot extensively before and during production, implement safety features that 

can immediately stop a robot so a potential problem can be investigated, constantly search for 

ways of improving the robot, and study the robot’s performance closely. 

3.2.2 Roomba 

Autonomous functionality in robots is nothing new. For example, Roomba by iRobot has been in 

many homes across America since 2002 [2]. While it is much smaller, it utilizes many 

technologies that will need to be considered for the lunabot, primarily calculating location and 

path using infrared emitters and cameras. While the Roomba is running, it is mapping out the 

area and uses this information to plan efficient cleaning courses and remember where the robot 

has been. This allows it to run for hours since it can automatically return to its home dock and 

recharge when the battery is low, and then return to the location and path it was on before the 

battery was low [4]. While the lunabot will not solely use a camera to understand its location, it 

is a large source of its direction and enables object detection. We will need to use the camera in a 

similar way to avoid rocks and potholes while still making progress toward our goal. However, 

we need to identify and excavate regolith whereas the Roomba is focused solely on the 

navigation of its field. This difference in task complexity signifies the additional challenge in the 

autonomous development of our robot. Also, we do not have the luxury of moving around the 

map and bumping into things to map out the location like the Roomba, we must be able to 

navigate it our first time through and avoid hitting things to prevent potential damage to the 

robot. Luckily, we can make use of a more powerful camera and more advanced frameworks for 

the robotics competition, but that does not cancel out the additional requirements that we are held 

to. 
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4.0 Approach/Design 

4.1 Requirements 

The competition has a strict set of rules for the robot that must be followed. These rules are the 

set of requirements that goes as follows ([3], page 29-30): 

● The robot, before moving, must be contained within the dimensions: 1.1m length x 0.6m 

width x 0.6m height. After it begins, it may expand beyond these dimensions, but can not 

exceed 1.5m in height.  

● The robot must not be any heavier than 80kg. 

● There must be at least 4 points which humans can lift the robot by. These points must be 

clearly marked (ISO 7000-1368) so the robot can be safely moved. 

● The robot can be launched in any orientation. The axes X, Y. and Z correspond to length, 

width, and height and must be declared to the inspection judge. 

● The robot must have a Reference Point Arrow marked on it which points in the direction 

that the robot should begin moving in before it starts. This arrow does not indicate what 

direction the robot should always move in. 

● Subsystems which are attached to the robot that transmit commands, data, or video will 

be counted toward the final weight. Equipment used for these purposes that are not 

attached to the robot will not be counted in the final weight. 

● Multiple robots are allowed, but must comply with the dimension and weight 

specifications as 1 unit. 

● The robot may be controlled either with a remote control or autonomously. 

● Touch sensors are not allowed. 

● The robot must be equipped with a “Kill Switch”. This Kill Switch must be a red, easily 

accessible emergency stop button which satisfies the following conditions: It must be 

implemented in a way that it uses trusted engineering practices and principles. It must 

have at least a 40mm diameter. It must be placed on a surface that is easy to access and 

requires no additional steps to get to. Only 1 Kill Switch may be placed on each robot. 

Disabling the Kill Switch without authorization from the staff will get the team 

disqualified. The Kill Switch must immediately disable the robot after 1 press of the 

button. It must be extremely reliable. Due to these reasons, a Commercial Off-The-Shelf 

red button is required. A closed control signal to a mechanical relay is allowed if it stays 

open to disable the robot. The button should disconnect the batteries from all controllers 

and it should isolate the batteries from the rest of the active sub-systems. If a system is 

powered by its own, independent, internal computer battery, then it may stay powered on 

in the event of the Kill Switch being pressed.  

● The robot must provide its own power. No power from the facility will be able to be used 

for the robot during the attempt. The robot can use as much power as it wants, there is no 

limit. The energy used by the robot must be recorded with an Commercial Off-The-Shelf 

logging device. The energy used must immediately be shown to the judges after the 

attempt.  

● The robot can not use any processes, gasses, fluids, or any consumables that would not 

work at a place other than Earth. Something like a dust wiper controlled from Earth that 
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operates on the robot is acceptable. Closed pneumatic systems can be used by the robot if 

the gas is supplied by the robot.  

● Due to limited budgets, the robot does not have to use equipment that is able to be used 

off-world, but only if the components can be swapped for off-world environment rated 

equipment. Examples of equipment that the robot cannot use are: GPS, rubber pneumatic 

tires, air/foam filled tires, open/closed cell foam, ultrasonic proximity sensors, or 

hydraulics due to the fact that NASA cannot anticipate these to be used in an off-world 

mission.  

 

Figure 2 - Mining Arena ([3], page 32) 

4.2 Use Cases 

Use Case #1: Gather resources from dangerous/inaccessible terrain 

Author: Jackson Newman 

Primary Actor: NASA researcher/Robot supervisor 

Goal in Context: To gather information based on samples that the robot retrieves or to use the 

resources that are found outside of Earth or in extreme environments on Earth. 

Preconditions: Regardless of where the robot is mining, the robot supervisor must be well-

educated and prepared to ensure the robot’s mission is successful. If the robot is going into 

space, there must be proper extra-terrestrial transportation and the researchers must be well-

equipped to conduct useful research with the data.  

Trigger: There is a demand for resources from dangerous environments or off-planet. If from 

space, NASA may request for research to be done on certain resources or environments to 

prepare for human space travel. 

 

Scenario: 

1. If the mission is for space, NASA sends the robot to another planet. 

2. The robot is supervised whilst autonomously moving through the terrain and gathering 

resources. 

3. Once the robot has gathered a satisfactory amount of resources, it and its harvest return 

from the possibly dangerous or off-planet dig site. 

4. The resources are then studied or used. 
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Exceptions: 

1. The robot becomes obsolete because other research or resource extraction surpasses the 

robot's importance, value, and/or simplicity. 

2. The regions are too difficult to reach or the resources simply don’t exist in feasible 

quantities of nearby terrain/planets. 

3. The resource may not be necessary enough to justify spending the money to send the 

robot on a trip to collect it. 

 

4.3 Detailed Architecture 

We transitioned from the planning and preparation phase to the production phase this semester. 

Furthermore, we deployed the knowledge gained through communication with our CSCE mentor 

William Burroughs and the Mechanical Engineering sub-team to adapt our goals. Specifically, 

the plans of starting this semester with robot control code development and unit tests on previous 

years’ movement logic had to be postponed due to unexpected delays from the Mechanical 

Engineering sub-team. Rather than freezing our task schedule, we opted for restructuring our 

AGILE sprint plans to work on elements of the project that didn’t depend on robot completion. 

This meant starting on prerequisites for the autonomous code such as position tracking, video 

streaming, and motor controller driver software. Besides enabling autonomous software 

development further down the line, moving these tasks up allowed us to hasten some aspects of 

manual control as the robot’s completion caught up to the software. Near the start of March, the 

Mechanical Engineers had completed the basic chassis of the robot (Figure 3) which enables 

more movement logic-related tasks. 
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Figure 3 - Robot Chassis (as of 3/01/2023) 

A key aspect of our progress this semester has been splitting the manual control and autonomous 

aspects of the robot apart and finding the overlapping elements. Before writing any new code, we 

first analyzed previous years’ code and updated user documentation based on the context we got 

from William and the Mechanical Engineers. An example is the change in the robot’s excavation 

system from a flywheel bucket to a conveyor bucket which has many implications for the ROS 2 

nodes that need to be created. After reviewing and updating previous years’ code, we were able 

to effectively summarize the node breakdown and architecture of the software design behind the 

Lunabotics excavator. 

The Communication node is the most crucial and central element of the Lunabotics excavator's 

software architecture. As a ROS 2 node, it takes in data from other nodes and publishes data 

through rclcpp APIs to an established socket, allowing the robot to move according to user input. 

The Communication node's inputs are typically integers or floats, which it converts to 

hexadecimal to standardize the published output. Its main job is to set up the connection to the 

socket address and continuously run its processes until the rclcpp::ok condition becomes false 

due to an error or the robot being turned off. However, the Communication node cannot function 

alone. It relies on other nodes to provide it with data, including the Client node and publishers 

such as Logic, Excavation, Falcon 1 and 2, Talon 1 and 2, Zed, and the Power Distribution Panel 

nodes. 

4.3.1  Manual Control 
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Since a significant portion of the competition's score is based on the robot's ability to excavate 

using manual control, we have made it our priority to ensure the robot is fully functional as soon 

as possible. Therefore, we have prioritized aspects of manual control that are prerequisites to 

autonomy. Despite not having kinematic simulations or a physical robot two months into the 

semester, we have focused on software development for individual components such as motors, 

motor controllers, cameras, and data publishing/receiving. These tasks impact multiple nodes 

within our software architecture and their connection with the Communication node. To ensure 

effective manual control, we have defined the responsibilities and details of each node and how 

they are set up. By doing so, we can enable efficient manual control and prepare for autonomy 

development later in the project. 

 

Figure 4 - Flowchart of Nodes 

Figure 4 above presents a flowchart that outlines the interactions between nodes relevant to 

manual control. The Client is responsible for transmitting joystick information such as key states, 

button presses, and throttle to the Communication node as well as receiving and processing 

motor, power, and image data. A competition detail that impacts our design is the score 

deduction for publishing data to the Client during the actual competition. As such, we have a 

silent run mode which will be enabled outside of testing. Further down the chain is the Zed node, 

a crucial element for both automation and manual control, which is responsible for publishing 

images from our Zed2i camera to calculate the robot’s position and detect obstacles. The Power 

Distribution Panel (PDP) node is responsible for reading current and voltage measurements, as 

well as controlling the state of individual power outlets. By publishing our power-related data to 

the Communication node, we are able to monitor each electric component of the robot through 

its Controller Area Network (CAN bus) id. 

The Logic node is a crucial component of the robot's control system responsible for various 

critical functionalities, such as updating the wheel and excavation motor speeds. It receives real-

time information from the Communication node, including the joystick axis, joystick button, 
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joystick hat, key state, and zed camera position. Based on this information, the Logic node 

computes necessary adjustments to the coordinate planes and throttle for both the right and left 

wheels to update the wheel speeds. In addition, the Logic node can reset the robot's speed to zero 

when needed. The excavation system is also controlled by the Logic node, which adjusts the 

shoulder speed, arm speed, and drum speed based on the published data from the 

Communication node. This enables the excavation system to operate smoothly and accurately. 

The Logic node's ability to execute different states of the robot based on joystick buttons is 

another vital aspect. For instance, button two toggles between the drive and excavation state, 

while button three inverts the direction of the drum. Such functionalities provide greater control 

over the robot, allowing it to perform various tasks efficiently. To ensure that the Logic node 

operates as expected, we plan to create unit tests that simulate different control scenarios. These 

unit tests will help to identify any potential issues and improve the overall reliability and risk 

mitigation of the robot. With proper testing and validation, the Logic node will operate smoothly 

and accurately, making the robot an efficient and reliable tool. 

The Falcon node is responsible for controlling the Talon FX motor controllers and setting the 

speeds of the Falcon motors attached to them. These motor controllers are integrated into the 

Falcon 500 motors and feature built-in drivers that enable us to easily control them using APIs in 

our code. Additionally, these drivers automatically convert control signals into the CAN bus 

format for transmission. The Falcon node receives input for drive_left and drive_right speeds, 

which it then utilizes to execute precise turns or maintain a straight path by adjusting the speed 

of the drivetrain motors accordingly. The Falcon node receives information published by the 

Logic node, processes it, and transforms it into movement commands that are executed by the 

Talon controllers. This node also publishes talon_NUM_info to the Communication node, which 

provides real-time updates on the motor controller status. 

The Talon node is responsible for controlling the Talon SRX motor controllers that regulate the 

movement of the linear actuators responsible for vertical motion and height control of the 

excavation apparatus and bucket system respectively. Although not built-in, the motor 

controllers come equipped with APIs, and the Talon node leverages these APIs to automatically 

convert control signals to the CAN bus format. The node receives shoulder_speed and 

dump_bin_speed values from the Logic node to control the motors responsible for moving the 

shoulder and dump bin. It publishes talon_NUM_info to the Communication node to keep the 

entire system updated on motor performance. Upon receiving the data from the Logic node, the 

Talon node translates the information into movement by the motor controlled by the Talon 

instance. 

The Excavation node is a crucial component of the robot's manual control and autonomous 

functionalities. It enables us to control the excavation system via the controller and call an 

excavation macro within the autonomous section. Last year, the Excavation node received 

excavationArm and excavationDrum data from the Logic Node. The excavationArm value 

controlled the linear actuators that determined the height of the excavation apparatus and will 

likely maintain this functionality. The excavationDrum value controlled the speed at which the 

flywheel spun and will now control the motor that spins the conveyor that the buckets are 

attached to. This year, we will be using a NEO brushless motor hooked up to a SPARK MAX 

Motor Controller. This new type of motor and controller means we cannot leverage our 
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Talon/Falcon nodes and will need to develop a new Neo node responsible for converting speed 

values into motor movement. We went through the development process to develop the new 

Excavation and Neo nodes. This started with the initial analysis and reverse engineering of the 

SPARK MAX Motor Controllers, which are necessary for sending signals over the CAN bus to 

set specific motor values. We connected to the onboard Jetson Nano via SSH to sniff addresses 

traveling through the CAN bus as we executed commands on the REV Hardware Client. We then 

wrote and executed C++ files to test specific addresses and payloads. The culmination of this 

analysis was the SPARK MAX Driver Software, which includes functions such as inputting 

speed values between -1 and 1, which are converted into the IEEE Standard for Floating-Point 

Arithmetic (IEEE 754). This allows us to set the speed for the motors and is an essential step in 

developing the Excavation node. 

4.3.2  Autonomy 

The NASA Lunabotics competition assigns a portion of the score on the robot's autonomy. 

Therefore, it is in our best interest to ensure the robot is autonomous to maximize the team’s 

points in the competition. To do so, we must ensure the robot understands its spatial location as it 

traverses the competition ground. In other words, the robot must be able to navigate sections of 

the course by itself. To enable this, we have many sensors that collect various movement metrics 

of the robot, such as the SparkFun LIS2DH, which will measure the robot's acceleration without 

consuming much power. It contains capacitive plates, which move in relation to each other as the 

system accelerates. This changes the capacitance, which is proportional to the system's 

acceleration, thereby allowing the robot to measure its acceleration [5]. It is a 3-axis 

accelerometer; thus, it can measure the acceleration in the x, y, and z planes of motion [6]. Next, 

we use a ZED2i stereo camera to ensure that the robot can avoid various obstacles present 

throughout the competition’s course. The first advantage of the ZED camera is that it can 

estimate the depth of various objects using binocular front-facing cameras, much like how 

human eyes function (illustrated in Figure 5). Another advantage of the camera is that it can map 

the entire 3D plane that the camera sees, thus giving our robot a way to create a point-cloud map 

of the whole competition ground so that it can optimize its traversal by finding the path of least 

resistance from the extraction zone of the regolith to the target hopper. The camera augments the 

estimated location of an object from the front-facing cameras using a neural network [8]. The 

camera will also feed all the information to the team’s controlling computer allowing us to see 

what the robot sees in addition to the robot’s depth map. These are the primary hardware 

equipment used for the automation of the robot. 
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Figure 5 - An illustration of binocular vision [7] 

 

Our initial breakdown for the Autonomy is the following steps: 

1. Tracking the position of the robot. 

2. Tracking the orientation of the robot. 

3. Calculating the angle between an ArUco marker and the robot. 

4. Turning the robot a certain amount of degrees. 

5. Driving the robot a specific number of feet. 

6. Running the Excavation Macro. 

7. Turn 180 degrees and return to the starting position. 

8. Running the Dumping Macro. 

Position tracking can be challenging because motion is relative to the observer's position. For 

example, a robot standing still on a bus is not in motion concerning the bus but in motion 

regarding the road. The ZED API accounts for this by providing two reference frames: the 

camera and world frames. The camera frame represents the difference in camera position 

between the last and current frames. In contrast, the world frame sets a reference point and 

describes the difference in the camera's current position with that reference point. The API calls 

always return the position behind the left camera rather than the center of the ZED2i camera. 

This means we need to account for the distance between the two points if we want to use the 

position of the camera's center. Finally, the ZED2i camera defines the position as (x, y ,z) 

coordinates in a 3D space [26] as shown in Figure 6. 
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Figure 6 - Illustration of the various coordinate systems in the ZED API [25] 

Our implementation uses a right-handed coordinate system with the z-axis pointing upwards and 

the x-axis pointing forwards, as shown at the top of Figure 6. To facilitate this, we create a Zed 

node that performs several key functions: 

1. It gathers data from the various ZED sensors using the API. 

2. It publishes this data so that other nodes can access it. 

3. It streams the ZED video to a client's computer. 

For position tracking, we create a topic that publishes a vector containing the (x, y, z) 

coordinates of the camera with respect to the world frame, along with a timestamp. Figure 7 

illustrates this by printing out the camera's coordinates to the console as it is moved, along with a 

UNIX timestamp. The large number printed first represents the UNIX timestamp, which 

measures the number of seconds that have elapsed since January 1, 1970. The tx, ty, and tz 

variables represent the camera's translations along the x, y, and z axes, respectively. By default, 

the units of translation are in millimeters, but for our purposes, we convert them to meters. 
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Figure 7- Implementation of Position tracking 

The orientation of a camera, which is attached to the robot, can be described by its rotations 

around three different axes: pitch, yaw, and roll. These measurements are typically represented 

using a mathematical concept called a quaternion [27], which the ZED API uses to store the 

camera sensor's rotations [26]. To convert this quaternion into more familiar roll-pitch-yaw 

angles, we use the Matrix3x3 class provided by ROS 2's geometry2 library [28]. Once we obtain 

these angles, we publish them alongside a timestamp from the Zed node so that other nodes can 

access this information. Figure 8 shows this process, where the R, P, and Y variables denote the 

roll, pitch, and yaw angles in degrees, respectively. 

 

Figure 8 - Implementation of Orientation tracking 

The next major hurdle in making the robot autonomous is calculating the angle between our 

robot and an ArUco marker, which designates the dumping zone for the rocks the robot must 

collect and other landmarks in the arena. The big idea behind the implementation derives from 

the geometric concept of calculating the angle between two vectors. As explained previously, we 

know the robot coordinates using the ZED camera. Let us denote this as v1. The next big task is 

to find an ArUco marker using the ZED camera’s images. Once we do, we should be able to 
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retrieve the marker's estimated x, y, and z coordinates from the point-cloud map, which we can 

denote as v2. To calculate this angle, we can use the following formula: 

𝑣1 ∘ 𝑣2  =  |𝑣1|  ∘ |𝑣2|  ∘ 𝑐𝑜𝑠(𝜃) 

We can now rearrange for 𝜃: 

𝜃 =  𝑎𝑟𝑐𝑐𝑜𝑠(
𝑣1  ∘  𝑣2

|𝑣1| ∘  |𝑣2|
) 

To implement all of this, we use an OpenCV library to detect a marker. Then, we will call the 

ZED API to retrieve the point-cloud data on the position of the marker. Next, we create a 

function to implement the equation above to calculate the angle between the robot and the ArUco 

marker. Finally, we publish this information so that other nodes use it to move the robot 

correctly. After properly detecting and processing the ArUco markers, we can create the 

Autonomy node, which parses information from the Zed and Logic nodes to turn the robot a 

certain number of degrees and locate ArUco markers in the arena. To accomplish this, we use the 

camera reference frame from the ZED API and keep track of the total degrees turned until we 

reach the desired angle. We also need to account for the alignment difference between the center 

of the robot and the camera. After detecting and locking onto the desired ArUco marker, we call 

the function that drives the robot a set distance forward. This function will set the motors to spin 

at a constant speed and repeat the message until the robot has moved the desired distance. 

Ideally, this process does not require any ZED API calls since we are only working with the 

motors in a linear motion, but for the sake of making the action robust, we use the ZED2i’s 

distance-measuring ability for confirmation. 

The challenge of our autonomous flow is determining the timing of the macros. For our base 

plan, we orient the robot based on the ArUco marker, then drive toward the excavation site. This 

is followed by an excavation macro to extract the material. This involves sending messages to 

start the excavation mechanism, dumping the material into the robot’s stockpile, and determining 

when to stop the process. After extracting the regolith, we will rotate the robot 180 degrees to 

return to the dumping site. Then, the robot will drive forward until it is at the dump site. Finally, 

we dump the material. If time allows it, we will continue to iterate and build upon the complexity 

of our strategy, with the ultimate goal being to implement a fully autonomous robot that would 

implement Dijkstra’s pathfinding algorithm, use computer vision models such as YOLO [10] to 

avoid obstacles, detect regolith, and square up with the dump site. However, this is a stretch goal 

and will most likely only reach foundational development such that future Razorbot teams can 

use and improve upon it to make the robot fully autonomous. 

Therefore, we are implementing three major nodes that will handle the automation of the robot. 

The first node is the Zed node. As mentioned above, it will use the ZED API to publish 

information gathered by the camera to other nodes. The most important information gathered is 

the position of the robot, the orientation of the robot, the point-cloud map of the robot’s 

surroundings, and the images that the robot sees. This node is also responsible for streaming the 

data from the robot to a client computer via a TCP connection over the network. We leveraged 

the ZED API’s feature to stream the camera images to a remote client for our robot. While the 

Zed node in and of itself does not enable our robot to do anything autonomously, the information 

gathered by it is crucial for the robot to be semi-autonomous. The next node which plays a 

crucial role in automating the robot is the Logic node, which calculates the robot’s position from 
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the Zed node and publishes this information to the Automation node. The final node we are 

implementing is the Automation node, which contains the logic for moving the robot, rotating 

the robot, and our semi-autonomous strategy, which has been described previously. This node 

will take in the data from the Zed and Logic nodes to determine which action the robot must 

perform next. Then, it will publish this information to nodes such as the Excavation node, Talon 

node, and Falcon node. Finally, to elaborate on why the robot is semi-autonomous as opposed to 

fully-autonomous, we are implementing the nodes in such a manner that the robot will disregard 

autonomous commands while we are manually controlling the robot. This is because the 

competition scoring emphasizes extraction over autonomy, and thus this provides a way for us to 

maximize the team’s points in case of autonomous failure. To implement this, we will have a 

button on the joystick that will flip a boolean indicating whether autonomy functions are on or 

not. 

4.4 Risks 

Risk Explanation & Risk Reduction 

Lack of 

Communication 

Since this project has a very large separated team, any lack in 

communication can lead to slow progress. To increase our inter-team 

communication and avoid miscommunication, we started the project 

off with a Teams channel dedicated to open-communication and 

weekly check-ins. We also communicate task scheduling through the 

Razorbotz Trello board. The combination of the Teams channel, the 

Trello board, the Razorbotz discord server, and consistent 

emails/meetings with our supervisor (Andrew Burroughs), we can 

reduce communication risks. 

Mechanical Failure There are many points of possible mechanical failure related to the 

physical construction of the robot. Some major points of failure 

include the motors and motor controllers with possible short circuits. 

To reduce the chance of these risks, the MEEG team is using different 

motors & motor controllers which have a lower failure rate, and we 

will avoid any programmed angles/moves that might overload any 

components. 

Differences in 

physical and 

simulation 

In previous years, there have been issues with the coded tests not 

translating to the physical robot well. To reduce this risk, we are 

planning to start earlier and work in better conjunction with the MEEG 

team to understand their CAD designs as well as the physical robot. 

This allows us to notice any differences between CAD designs and the 

physical robot when making the autonomous program. 

Library/Framework 

Version Mismatch 

With the differences in member operating systems and updates in 

necessary libraries & frameworks, we may easily run into version 

control issues. To reduce the risk of this, we are comparing our ROS 2 

install procedures with previous years and getting all the installations 
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done as early as possible. We also use the virtual machine VirtualBox 

when possible to unify our installation and coding processes. 

Autonomous Failure When we start programming for autonomous control, there are many 

risks that can lead to autonomous failure including failed object 

detection. We can reduce the effects of any autonomous failures 

through a “Kill Switch” button on the robot to shut off power and 

possible manual override to prevent a serious crash remotely. 

 

4.5 Tasks 

1.0 Researching competition 

1.1 Understand objectives of the competition 

1.2 Understand our responsibilities as the CSCE team 

1.3 Meeting with supervisor to clarify questions and concerns regarding the CSCE team’s 

responsibilities 

2.0 Learn ROS 2 

2.1 Install on computers 

2.1.1 Install VirtualBox (if not using Linux or M1 mac) 

2.1.2 Run Linux Distro  

2.1.3 Install ROS 2 in the Linux OS 

2.2 ROS 2 Python & C++ tutorials 

3.0 Review previous code 

3.1  Understand what different components are doing 

3.2  Understand when C++ vs Python is required 

4.0 Streaming from the camera 

4.1 Investigate potential solutions to enable camera streaming 

5.0 General control 

5.1 Implement nodes to control desired motor 

5.1.1 Will subscribe to manual/autonomous nodes that publish motor speeds 

5.2 Excavation 

5.2.1 Enable manual control of motor 
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5.2.2 Expected operations include: 

5.2.2.1 Mine into the crater 

5.2.2.2 Collect the resources mined 

5.2.2.3 Store collected resources into temporary bucket 

5.2.3 Implement algorithm that performs the expected operations for the 

excavation tool 

5.2.3.1 Create node to control each motor based on the algorithm 

6.0 Manual control 

6.1 Translating joystick commands into motor speeds 

6.1.1 Program motors to drive 

6.1.2 Program motors to begin mining process 

6.1.3 Program motors to dump mined materials 

6.2 Communication with Client 

6.2.1 Implement communication so controls can be sent to robot 

6.3 Manual control nodes testing 

6.3.1 Create unit tests for each node to ensure proper functionality 

6.3.2 Create integration tests to ensure overall proper functionality 

7.0 Autonomous control 

7.1 Driving autonomy 

7.1.1 Create object recognition nodes with ZED 2i stereo camera 

7.1.1.1 Implement node for camera to publish images 

7.1.1.1.1 Send robot’s image stream to GUI 

7.1.1.2 * Implement node to receive images and handle object detection 

7.1.2 * Create nodes for the robot’s path planning 

7.1.2.1 * Implement node to create path based on object detection 

7.1.2.2 Implement node to translate path into motor speeds 

7.1.3 Communicate motor speeds to the desired motors 

7.2 * Excavation Autonomy 

7.2.1 * Utilize excavation node when robot has been positioned 

7.3 * Dumping Autonomy 

7.3.1 * Utilize object recognition and path planning nodes to detect and navigate 

to dump site 
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7.3.2 * Implement node to control the position of the bucket for dumping once 

at dump site 

7.4 * Autonomous control nodes testing 

7.4.1 * Create unit tests for each node to ensure proper functionality 

7.4.2 * Create integration tests to ensure overall proper functionality 

*To do be done if time permits based on Mechanical Engineering team’s progress 

4.6  Schedule  

Tasks Assignee(s) Dates 

Researching competition CSCE Team 10/1-11/27 

Install ROS 2 on personal machines 
CSCE Team 10/10-10/17 

Complete ROS 2 Python tutorials CSCE Team 10/17-10/24 

Complete ROS 2 C++ tutorials CSCE Team 10/17-10/24 

Investigate potential solutions for the video stream for the 

camera 
CSCE Team 

 10/24-11/7 

Review and understand code from previous years to ensure 

smooth transition into next semester 

CSCE Team 

 11/1-11/15 

Documentation of previous years code Jackson Burger 

Ahmed Moustafa 

Jackson Newman 

Justin Kilgo 1/30-2/6 

Manual controls testing Jackson Burger 

Jackson Newman 1/30-2/6 

Investigate Zed2i camera and software to begin object 

detection 

Ahmed Moustafa 

Rohit Kala 2/6-2/13 

Reverse engineer Spark Max motor controllers Ahmed Moustafa 

Jackson Burger 

Jackson Newman 2/11-2/25 

Implement node for camera to publish images Justin Kilgo 

Rohit Kala 

Jackson Newman 2/13-2/27 

Implement node to receive images and track position Rohit Kala 

Ahmed Moustafa 2/20-2/27 
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Tasks Assignee(s) Dates 

Communication with client Ahmed Moustafa 

Rohit Kala 2/27-3/11 

Test/Fix previous driving automation code Jackson Burger 

Jackson Newman 3/25-4/1 

Implement autonomous functions to test expected 

operations of autonomy (turning, driving certain distance, 

etc.) 

Jackson Burger 

Jackson Newman 

 4/1-4/15 

Handle ArUco marker orientation Ahmed Moustafa 

Rohit Kala 

Justin Kilgo 4/8-4/15 

*Implement algorithm that performs expected operations 

for the excavation tool   

*Create nodes for the robot’s path planning   

*Utilize object recognition and path planning nodes to 

navigate to the dump site   

*Communicate motor speeds to desired motors   

*Create unit and integration tests for each node for manual 

control   

*Create unit and integration tests for each node of 

autonomous control   

*Could not be finished due to time and hardware constraints; can be accomplished by future 

teams. 

4.7 Deliverables  

● Project Website 

o We will create a page on the Capstone website for our project which will contain 

our project information, tasklist, proposals, reports, and code. 

● Project Proposal/Report 

o We will be creating a proposal for the original idea of how we are going to carry 

out the development of this project. Upon completion, we will create a report 

detailing our solution for the project. There will be clear indications of decisions 

that strayed away from our project proposal. We will also include the difficulties 

that we have faced and the process we took to overcome them.  

● Manual Control Code 
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○ We will need to create a robot that can also be manually controlled using a 

joystick. This will enable the robot to navigate the map and excavate material 

normally. We will need to program the client/server connection on the Jetson 

Nano to allow us to send joystick inputs to the robot from a controller via our 

ROS 2 code and have the robot respond accordingly. 

● Autonomous Code 

○ We will be programming the robot such that it is semi-autonomous and will be 

able to accomplish the goals set by the NASA robot mining competition. To 

achieve this we will need to implement path planning, depth perception, and 

position tracking to navigate through the arena. This deliverable will include the 

multiple ROS 2 nodes for publishing images from the camera and planning the 

path to correctly send the motor speed data. 

5.0 Key Personnel 

Ahmed Moustafa - Moustafa is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed 

Programming Foundations I, Programming Foundations II, Programming Paradigms, Software 

Engineering, Artificial Intelligence, and Algorithms. He is currently a Software Development 

Engineer at SupplyPike working on full stack web development. Last summer, he attended the 

NACME-Google Applied Machine Learning Bootcamp working on a Reinforcement Learning 

model for a scale self-driving car. As a member of the CSCE portion of this project, he will be 

working on robot programming. 

Jackson Burger - Burger is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed 

Programming Challenges I, Programming Challenges II, Programming Paradigms, Software 

Engineering, and Database Management Systems. He is currently an Annual Engineering & 

Technology Intern at J.B Hunt where he does full stack web development. As a member of the 

CSCE portion of this project, he will be working on robot programming. 

Jackson Newman - Newman is a senior Computer Science major in the Computer Science and 

Computer Engineering Department at the University of Arkansas. He has completed 

Programming Foundations I, Programming Foundations II, Programming Paradigms, Database 

Management Systems, Software Engineering, and Algorithms. He is currently an annual 

Engineering and Technology intern for J.B. Hunt and works with the Continuous Integration and 

Continuous Development team. As a member of the CSCE portion of this project, he will be 

working on robot programming. 

Justin Kilgo - Kilgo is a senior Computer Science major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has completed Programming 

Foundations II, Programming Paradigms, Software Engineering, and Algorithms. He has 

experience programming robots from his high school robotics team and was a Software 

Development Engineer Intern for Amazon over the summer working on Full Stack Web 

Development. As a member of the CSCE portion of this project, he will be working on robot 

programming. 
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Rohit Kala - Kala is a senior Computer Science major in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has completed Programming 

Foundations I, Programming Foundations II, Programming Paradigms, Software Engineering, 

Artificial Intelligence, and Algorithms. He is currently an undergraduate research assistant for 

the CVIU lab at UARK. As a member of the CSCE portion of this project, he will be working on 

robot programming. 

 

Uche Wejinya - Dr. Wejinya is an associate professor in the Department of Mechanical 

Engineering at the University of Arkansas. He received his Ph.D. in Electrical Engineering from 

Michigan State University in August 2007. Dr. Wejinya's research relates to mechatronics with 

an emphasis on nanotechnology. His research delves into nanomaterials for nanosensors, 

nanoelectronics, and robotics which is relevant to this project. 

William Burroughs - Burroughs is a Master’s student in the Computer Science and Computer 

Engineering Department at the University of Arkansas. He has been on the Razorbotz team since 

2018 and was the Controls sub-team lead in 2020.  He is the current Computer Science sub-team 

lead and mentor for the RMC project. 

6.0  Facilities and Equipment 

● Facilities 

○ Mechanical Engineering Robotics Laboratory - Lab in the Mechanical 

Engineering building where the robot is built and tested 

○ Test Pit - Room in the Engineering Research Center used for larger tests that 

cannot be performed in the robotics lab. 

● Equipment 

○ ZED 2i stereo camera 

○ SparkFun LIS2DH accelerometer 

○ SPARK MAX Motor Controller 

○ Jetson Nano processor 

○ Pololu Glideforce GF23-120512-3-65 High-Speed LD Linear Actuator with 

Feedback: 12kgf, 12" Stroke (11.8" Usable), 3.3"/s, 12V 

○ Falcon 500 Motors 

○ USB to CAN converter 
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