

1

University of Arkansas – CSCE Department

Capstone II – Final Report – Spring 2023

Ponga Software Usage Tracking

Matthew Clemence, Dylan Vaughn, Ryan Drake, Julio Bonilla, Logan Reed

Abstract

In the world of software, the necessity of user data tracking is evident. Ponga wishes to

nudge its users towards certain value propositions in order to increase their lifetime value. These

value propositions comprise the number of uploaded photos, the number of shares, and the

number of comments one user perpetrates. With a healthy mix of these three value propositions,

a user’s lifetime value would be considered satisfactory. The amount of time a user has existed

also comes into play, but the numbers of their value propositions wouldn’t reach a significant

high without an extensive relationship with Ponga.

Our objective is to design a series of AWS Lambda functions and a database structure to

handle the tracking of users. The data gathered on each user will be drawn on to assess their risk

level as a customer and Ponga will act accordingly. To determine a user’s risk level, we will

perform calculations with a user’s value proposition numbers. If the user’s numbers are

unsatisfactory in one area, then Ponga can push the user in a different direction. The significance

of this problem lies in our unique solution to it. Our software is named Insight and will be unique

in tracking user data by comparing value propositions over time via calculations involving n-

dimensional geometry.

1.0 Problem

Ponga is a web application for photo identification, preserving family stories, and

keeping track of people, places, and things. Ponga took off when they implemented a

membership model on top of an already richly featured platform. Features include the ability to:

highlight people and/or details in a photo with a zoom and click, attach a link to a photo, and

play music alongside a photo. Ponga is for private interactions among families and not

advertisers. Ponga is delving into the process of advertising themselves and that’s where Insight

comes in.

Every product that exists today embraces some sort of advertisement to bring in more

customers. Ponga wants to not only bring in more customers but reinforce the ones they have.

This can’t be done without gathering appropriate data on their customers which portrays their use

of the application over time. Ponga’s problem can be demonstrated through a simple product

such as Reese's. Reese's have two value propositions also interpreted as groups from which their

customers come from. There is the group who enjoys chocolate, and the other group who enjoys

Ponga Data Tracking

 2

peanut butter. For Reese's to be successful they must be able to increase the number of customers

who belong to both groups. Reese's problem is the same as Ponga’s in that they need to know

which customers lean towards one or more value propositions over others.

This is a problem every product on the market runs into, be it an application or candy.

Not defining value propositions and grouping the customers by them can lead to stagnation in a

product. Risky customers are those who do not fall into all groups of a product and as such are

more likely to leave said product for another. In contrast, a healthy customer is one who falls into

all groups and their respective scores in those groups are determined by the product. Without a

deeper examination of their customers, Ponga can’t influence risky customers into becoming

healthy ones.

2.0 Objective

The objective of Insight is to design a solution that records customer activity, quantizes

their activities, and generates meaningful data that can be used to analyze a customer's level of

risk within an arbitrary window of time. Insight aims to track any change in customer behavior

over time and advise Ponga about any potential customer risk, trends, or anomalies. Our design

will involve a series of AWS Lambda functions coupled with DynamoDB as a database. One

will retrieve data from a database table, and another will send data to a separate database table.

Lastly, one will calculate user attribute affinity based on the data sent and fill the table to be

retrieved from. Our team aims to resolve the problem outlined above by instantiating APIs that

are triggered by a user making any action on their account and organize that data so that Ponga

can better manage that user.

The initial goal is not to weight value propositions, but to observe and collect user data;

thereby allowing a thorough analysis of user patterns, preferences, and engagement levels. Using

Amazon Kinesis Data streams, all data moving through our model can be timestamped and

stored in each user record. The AWS platform will allow us to integrate services necessary to

maintain a service level agreement prescribed by Ponga. The team will research the AWS

platform and familiarize themselves with its functionalities. The team will also synthesize a

solution to compare and quantify data points within an nth dimensional vector space. The team

will remain in communication with the POC on a weekly basis to ensure we are operating within

desired metrics.

3.0 Background

3.1 Key Concepts

The meat and bones of Insight will be created using AWS (Amazon Web Services). AWS

is a cloud provider that provides servers and services that can be used on demand and scales

easily. AWS powers some of the biggest websites in the world, one being Netflix.

 [1] AWS Lambda is one service we will be using. AWS Lambda introduces the idea of a

serverless experience by employing virtual functions. Rather than being limited by RAM and

CPU, these functions are limited by time. These functions are run on-demand, meaning there is

Ponga Data Tracking

 3

no charge if the functions are not being used. When these functions are being used, we are billed

by the 100ms. The most significant feature of AWS Lambda is automatic scaling. This means

that as many instances of a lambda function that we need can be run all at the same time. This

service cuts out the need to manage the infrastructure of an application and allows us to focus

solely on what the application does.

 [2] DynamoDB is another amazon web service we will utilize. DynamoDB is a managed

NoSQL database optimized for performance at scale. NoSQL stands for Not Only SQL.

DynamoDB acts as a key/value lookup store, meaning values that are stored in the database are

found through an API given a key. This is slightly different from the traditional SQL database

with only rows, columns, and tables. A managed database is one with the storage, data, and

computing services maintained by a third-party provider. DynamoDB can scale out horizontally

by adding more nodes onto the cluster and separating data out onto those nodes. This means that

even if the size of the data grows, the performance will not see a major change. DynamoDB is a

very safe service to use due to its high availability and durability. For availability, DynamoDB

has a 99.99% guaranteed up time which translates to around 26 seconds of monthly down time.

For durability, DynamoDB stores multiple copies of data across multiple nodes to avoid loss of

data. One caveat of DynamoDB is that one should know how they want to access their data

before using it, otherwise you may not be able to access data in the way you want when all is

said and done.

 [3] Amazon API Gateway is another service needed for Insight. With API Gateway, we

can create, publish, maintain, monitor, and secure REST, HTTP, and WebSocket APIs at any

scale. We will use Amazons API Gateway because it will easily integrate with other web

services such as Lambda and DynamoDB. Our application will need to receive API calls from

the Ponga application, and this is done through Amazon API Gateway.

[4] Amazon Kinesis allows for incoming data to be processed in real time without

interrupting the database in any way that would prohibit other actions from being completed

simultaneously. Using this, Insight would be able to analyze incoming data and trigger Lambda

to begin working on manipulating data and sending it to a separate table. When the data arrives

in the second table, Kinesis could trigger another action.

[5] Amazon EventBridge is a serverless event bus service that you can use to connect

your applications with data from a variety of sources. EventBridge pipes deliver a stream of real-

time data from your applications, software as a service (SaaS) application, and AWS services to

targets such as AWS Lambda functions, HTTP invocation endpoints using API destinations, or

event buses in other AWS accounts. We will use EventBridge pipes to send a DynamoDB data

stream to multiple API endpoints triggering their own AWS Lambda functions.

[6] Amazon Simple Queue Service solves the problem of requests from the client to the

application being lost due to the workload. Data sent and received between the client and API

Gateway will be processed through SQS. This allows an application to take as many requests or

data sent from the client as needed and process them when the API Gateway is available. This

ensures that none of the client data is lost, or the API Gateway doesn’t incur an error from an

overload. The SQS allows for a manageable workload at any scale.

Ponga Data Tracking

 4

3.2 Related Work

 Insight falls under the field of user data tracking applications. The most common ways to

track user activity today include tools like Google Analytics and Search Console, click tracking,

scroll tracking, and viewing session recordings of users. These methods all track user activity on

a website or app in a rudimentary way that requires excess effort from the client.

 [7] Google Analytics is a platform that collects data from websites and apps, then

provides reports to the client. Setting up Google Analytics for yourself requires making an

account and adding JavaScript measurement code to each page on your site. This tracks how

many users visited a particular page or bought a certain item on a store page. It collects user

browser information such as: language, type, device, and operating system. Once this data is

collected by the JavaScript code, it is packaged and sent to Google Analytics to be processed into

reports. These reports contain the aggregated data organized by user device and browser. The

client can also filter the data sent to Google Analytics if they wish to protect private company

data. The processed data is stored in a database where it can’t be modified. This could be used to

gather the data for our problem, but the client still needs to analyze it themselves.

 [8] Click tracking is exactly what it sounds like. All user’s clicks on a website are tracked

and compiled into a report for the client. Clicks tracked include those on links and buttons. This

is useful for website design and marketing. The reports contain events with click being its own

event. The number of clicks per user is displayed, and each button/link has its own value. [9]

Scroll tracking tracks how far a user scrolled down a web page. A trigger called the scroll depth

trigger is used to track this. There are vertical and horizontal scroll depths. The client can enter

percentages representing the page height or width to set trigger points on the page. The variables

saved for future reference are scroll depth threshold (depth of trigger in percent), scroll depth

units (pixels or percent), and scroll direction (vertical or horizontal). While our problem deals

with marketing, we are tracking the use of core elements of an application which includes more

than buttons and links.

 [10] Session recordings are renderings of real actions taken by users as they browse a

website. Recordings capture mouse movement, clicks, taps, and scrolling data for desktop and

mobile devices. This kind of tracking can help improve the user experience of websites and

applications. By watching session replays, the client can find patterns that explain the prevalence

of risky users. Recordings also help catch any bugs causing users to get stuck, confused, and

frustrated. The problem here is that the client must watch these recordings and spend time

making sense of their customers' actions. For a large-scale application, watching all the session

recordings and putting together a trend would be more work than it’s worth.

Overall, the problem with Google Analytics and session tracking is the amount of

interaction required by the client and the nature of the processed data. Google Analytics just sorts

the data for easier readability, but any trends need to be inferred by the client after receiving. Our

application focuses only on the value propositions of an application/website and the user’s trend

with them. The client will provide as many value propositions as they want and connect the

quantifiable actions taken to our API endpoints. Our processed data will determine a trend

towards one or more value propositions. Once the client gets a read on their average customer,

Ponga Data Tracking

 5

they can then add weights to the value propositions with triggers to notify the client when users

enter a risky state. The session recordings would work for Ponga, but it is a rough solution to a

long-term problem. The difference between our data tracking and existing methods is the

enhanced focus on value propositions and the use of N dimensional geometry for calculations on

behalf of the client.

Ponga Data Tracking

 6

4.0 Approach/Design

4.1 Use Cases

Use Case: Submit Updated Metric

Author: Jerrel Fielder

Primary Actor: CLIENT application via POST method to API URL

Goal in Context: To provide an update to one or more user engagement metrics for

tracking.

Preconditions: API should be available, and the call should be formatted correctly.

Trigger: The user takes a quantifiable action in the CLIENT application and the CLIENT

invokes the API in order to log the action.

Scenario:

1. User takes quantifiable action in CLIENT application, such as uploads photographs
2. CLIENT counts the number of subject items in the user action
3. CLIENT invokes API URL providing:

a. User: <email>
b. JSON payload with an array of at least one key-value pairs:

i. Attribute ID: count
4. If the CLIENT passes a key belonging to a customer that doesn’t exist in the system, the

system must create a record for that primary key and the data from CLIENT call
becomes the T0 data point.

5. SYSTEM uses current system time as the timestamp to be persisted with the event in
the database

Exceptions:

1. Successful call returns HTTP status code 200
2. Incorrectly formatted API call from CLIENT returns HTTP status code 403
3. Unauthorized access attempt returns HTTP status code 404
4. Server error / down returns HTTP status code 500

Priority: High

Channel to actor: CLIENT application

Frequency of use: Up to many thousands of times per day.

Secondary actors:

Channels to secondary actors:

Open Issues:

Ponga Data Tracking

 7

Use Case: Retrieve Historical Data for a User

Author: Jerrel Fielder

Primary Actor: CLIENT application via GET method to API URL

Goal in Context: To retrieve the historical attribution of a user.

Preconditions: API should be available, and the call should be formatted correctly.

Trigger: CLIENT application requires the historical attribute trajectory for internal processing

and/or visualization. Results should always be presented in reverse chronological order
(newest first, oldest last) and limited to the number of records specified in the OPTIONAL
parameter “limit: n”. If no “limit” parameter is included in the call, return all records in batches of
50 with a pagination ID in the return set.1

Scenario:

1. User is logged in and active in the CLIENT application
2. CLIENT needs raw historical data (visualization, etc.)
3. CLIENT invokes API URL providing:

a. User: <email>
b. OPTIONAL JSON payload specifying maximum array elements to return:

i. limit: n
4. Response Payload:

a. User: <email>
b. Records: <n records>
 [

 {
i. Timestamp: <created date>
ii. Data: <Magnitude, All Angles>

 },
 …
 N

]

Exceptions:

1. Successful call returns status code 200
2. Incorrectly formatted API call from CLIENT returns status code 403
3. Unauthorized access attempt returns status code 404
4. Server error / down returns status code 500

Priority: High

Channel to actor: CLIENT application

Frequency of use: Up to many times a day.

1 https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.Pagination.html

Ponga Data Tracking

 8

Use Case: Calculate Attribute Affinity and Persist

Author: Jerrel Fielder

Primary Actor: System

Goal in Context: To calculate the current attribution affinity for a given user.

Preconditions: None

Trigger: Upon the update of a user (via the “update User” API), calculate the current attribute

affinity and update the user record.

Scenario:
1. Upon the update of a user (via the “update User” API)

2. Calculate the new resultant vector by adding Tn to Tn-1
3. Calculate the new state of the user affinity for Tn
4. If the Tn-1 is different from the Tn state:

a. Store the new state in a persistent store as the current state for the user

Exceptions:

1. Unsuccessful operation should be fully logged with:
a. User: <email>
b. 2 x n matrix containing all attribute values for Tn-1 and Tn to
c. Timestamp of the failure
d. Any system or OS related error message

2. Log the webhook call and the entire payload

Priority: High

Channel to actor: System / Change Data Capture

Frequency of use: Up to many thousands of times per day.

Secondary actors:

Channels to secondary actors:

Open Issues:

Ponga Data Tracking

 9

4.2 Detailed Architecture

Our design works on a platform of integrated web services hosted by Amazon known as

AWS services. These services are as follows: API Gateway, Lambda, DynamoDB, and

EventBridge. The connection of these services is documented as such:

The client calls API Gateway to update and receive data records. The API getUserData

endpoint will trigger the getUserData lambda function, while the updateUser endpoint will

trigger the updateUser lambda function. Furthermore, the getUserData endpoint utilizes only the

GET method, while the updateUser endpoint utilizes only the PUT method. This means

getUserData will be called to retrieve records, and updateUser to update records. Our objective is

to analyze the user data that comes in by doing calculations on it, so we make use of two

DynamoDB database tables. One to hold the raw data of users and another to hold its calculated

analysis. The calculations are done by the calculateAffinity lambda function which is invoked by

a call to the calculateAffinity endpoint. This endpoint employs the POST method as we wish to

create a new record every time new user data is submitted. The changes in raw user data are

captured by a DynamoDB stream which is being watched by an EventBridge pipe. The pipe calls

Ponga Data Tracking

 10

the calculateAffinity endpoint with the changed data as input. This data is processed by the

calculateAffinity lambda function, and the analysis is stored in a database table for retrieval. The

use of EventBridge pipes allows expansion through more lambda functions handling raw or

processed data in the future with ease and this is demonstrated by the TBD endpoints and lambda

functions in the flow diagram. Integral to our design is the scalability of the number of value

propositions. This means our application can be used by clients other than Ponga for the purpose

of analyzing their users. This scalability is implemented by the unique design of our lambda

functions and will be discussed later. Our stretch goals include designing more said lambda

functions and integrating a queueing system for the lambda functions to ensure no data is lost.

The AWS services flow directly from one to another; DynamoDB acting as the heart of

our design while Lambda brings the services together through functions. The first step in the data

flow is a call to API Gateway from the client. A Ponga user will perform some sort of action

triggering the client to send a properly formatted call to the respective endpoint. The

getUserData endpoint receives query string parameters while the updateUser endpoint receives a

JSON payload. Each endpoint launches an associated AWS Lambda function. These functions

process an event containing the JSON payload in the body. The getUserData function does not

utilize the JSON payload in the body as it only requires query string parameters. These

parameters are User and Limit. User is the email tied to a user’s Ponga account while Limit is the

number of records to retrieve. If a request is made without the Limit parameter, the client

receives all records on that user in batches of 50. A request cannot be made without the User

parameter. We have two maps we define in Insight documentation. The User map is the response

from getUserData containing the number of records requested on a particular user. The Record

map is the JSON payload request sent to updateUser by the client.

The second step is API Gateway triggering a lambda function depending on the call it

receives. This lambda function will access a DynamoDB database table to either store or retrieve

information. If storing data, a user record will be either updated or created in the Raw table. The

change in this table is captured by DynamoDB as a data stream and piped directly to the

calculateAffinity endpoint, triggering its respective lambda function. The calculateAffinity

lambda function will perform calculations considering this new data and store the results in the

Processed table in DynamoDB. If retrieving data, N user records will be returned to the client as

a list of JSON documents in batches of 50 with pagination ID. The Processed table stores all

historical data on a user that has been processed, while the Raw table holds just the up-to-date

raw data of each user. This is because Ponga wishes to see a client’s trend when retrieving

records and that the calculateAffinity function only requires the running total of a user’s data

values to do calculations. The scalability of EventBridge pipes paired with Lambda and API

Gateway is why we prefer this design. In the future, anyone could come in with no knowledge of

the connected design and work on a new lambda function with the purpose of utilizing the data

from either table to add further functionality after the initial launch. This design befits a growing

application and AWS eliminates a lot of the groundwork.

Ponga Data Tracking

 11

getUserData: This function receives an event payload from the API and returns data queried

from the database. The event payload is expected to have the following fields:

The event payload is parsed for the ID and Limit fields. These are used in the query

parameters to retrieve a certain number of records for a specific user. If no Limit field is given,

then all data on a specific user will be returned in batches of 50, but this can be changed using

the Limit field. The first query done by the function will retrieve the first page and keep querying

until all requested records have been retrieved. This pagination is implemented in code using the

LastEvaluatedKey map and the ExclusiveStartKey query parameter. The LastEvaluatedKey will

be returned by the first query with the last key to be evaluated. This is used as the

ExclusiveStartKey in the next query. If the request is successful, a response JSON payload will

be created to be sent back to the client. The returned payload will include a status code, User

map, and headers.

Ponga Data Tracking

 12

updateUser: This function receives an event payload from the API and updates the data in the

database. The event payload is expected to have the following fields:

The event payload is parsed for the user and data fields. This function will then write the

data as an update to an entry in the Raw table or create a new entry if the user parsed does not

exist. This is done through a try catch that tries updating the record. If the record does not exist,

the error will be caught and instead add the record. The scalability of value propositions comes

into play in this function because we want to update the value propositions in data without

knowing what they are beforehand. To explain how this is done, we must first describe the

required parameters for an update query. These are Key, TableName, UpdateExpression,

ExpressionAttributeNames, and ExpressionAttributeValues. The Key is the primary key (and

sort key if there is one) of the table and TableName is self-explanatory. UpdateExpression is a

string that contains clauses, attribute names, and their respective variables. These clauses are

SET, REMOVE, ADD, and DELETE but we only use ADD and SET. Attribute names are Data,

Timestamp, and whatever value propositions are in Data. These attributes are given variables

that are defined by ExpressionAttributeValues. ExpressionAttributeNames is a map and only

required when the names of your attributes are keywords in DynamoDB. Data and Timestamp

are keywords, so they are only recognized by putting a hashtag in front of them in

ExpressionAttributeNames. ExpressionAttributeValues is a map and defines the value to be

added or set for each attribute. We want to take in data and format a query regardless of how

many or what the value propositions are. Taking the length of the data object in the event body

gives us how many value propositions there are. Then, using the object standard library of

JavaScript, we can extract the names and values of each proposition. With this information we

Ponga Data Tracking

 13

can fill out variables to be the maps for ExpressionAttributeNames and

ExpressionAttributeValues as well as the string for UpdateExpression before performing the

query. All a client has to do is send a data object through the API request body, and the function

will extrapolate the information for the update query. A response JSON payload will be created

to be sent back to the client. The response payload will include a status code and headers.

calculateAffinity: This function receives an event payload from EventBridge Pipe and queries

the database to create an item in the Processed table for a specific user. The event payload is

expected to have the following fields:

Ponga Data Tracking

 14

 The event payload body is parsed for the Data object and User ID string inside of the

DynamoDB map. The number of value propositions is defined by the length of the Data object,

and it is used to calculate the correct number of angles. If N is the number of value propositions,

then the number of angles to be calculated would be (N(N-1))/2. An array of objects is used to

store all calculated angles and each object has a Name, Value, and Dominant. The name defines

which value propositions are being compared. For example, one name could be Photos vs

Comments, and this would be called a relationship. Value holds the actual angle in degrees

calculated using the inverse tangent of the two value propositions. Dominant is for client

readability and states which of the value propositions is dominant in the relationship because

reading the angle value alone is not clear. If there is no dominant proposition it will just state

them as equivalent. This array of objects is stored in the Processed database table as the

“Angles” attribute. The magnitude calculated is that of the value propositions and is stored in the

Processed table as the “Magnitude” attribute. The function design allows for any number of

value propositions and easy scalability for any client.

Ponga Data Tracking

 15

DynamoDB provides several options for a database such as: a sort key, capacity mode,

indexes, encryption, point-in-time-recovery, time to live, and stream details. The sort key allows

for multiple records on the same user. We use a sort key for the Processed table because one user

has multiple data entries. There are two capacity modes known as on demand and provisioned.

On-demand simply bills for the actual reads and writes an application performs. Provisioned

allows you to optimize your costs by allocating read/write capacity in advance. We use on-

demand as we do not have the subsequent knowledge required for provisioned. Tables in

DynamoDB can utilize local and global indexes. We don’t use either form of index because our

tables are only queried based on partition key. Amazon provides encryption for their databases,

and we will be utilizing it. Point-in-time recovery is a feature that provides continuous backups

of DynamoDB data. Time to live is a feature that can put a lifetime on specific attributes or data

in your tables. We will use point-in-time recovery and time to live to safeguard the database

records and keep them fresh. Stream details refers to a data stream containing changes in data.

DynamoDB provides a stream but also allows the use of a Kinesis data stream. We use the

stream given by DynamoDB and feed events into an EventBridge pipe.

Ponga Data Tracking

 16

The Processed table holds all historical data on each user that has been analyzed and

ready for the client. As DynamoDB is a NoSQL database, the only columns of the table that are

defined are the partition and sort key. Insight produces two attributes’ “Angles” and

“Magnitude” per record. Each user will gain a new record for each new action taken.

Partition Key: User ID - user’s email

Sort Key: Timestamp - ISO 8601 date and time convention

Example table with multiple records for bob:

Ponga Data Tracking

 17

The Raw table holds raw data on a user that is irrelevant to the client. As DynamoDB is a

NoSQL database, the only columns of the table that are defined are the partition and sort key.

Insight produces two attributes’ “Data” and “Timestamp” per record. Each user will only have

one record which updates with each new action taken.

Partition Key: User ID - user’s email

Sort Key: None

Example table with one record for each user bob and bill:

To utilize Insight with a large-scale application like Ponga, a queue for incoming API

requests will be required. This is a stretch goal planned for version 2 of the design. Also, any

additional Lambda functions to be added will be a part of version 2. A queue is needed because

of the risk that API Gateway goes down, causing any pending requests to come back empty, and

there is no way to handle lost requests. To fix this, we would connect a queue to store all API

requests until API Gateway is ready to accept a new request. This can be done through Amazon

Simple Queue Service (SQS). All requests will be queued to ensure that they eventually make it

to API Gateway. SQS would act as a middleman for API Gateway and the Ponga client. Taking

advantage of AWS to implement our API will allow for near infinite scalability and easy

modulation in the future.

Ponga Data Tracking

 18

4.3 Risks

Risk Risk Reduction

Setting up database schema DynamoDB is a Managed NoSQL Database that is

optimized for performance at scale and can store more

complicated objects such as JSON files. We will have a

complete design of the database schema before creating it.

Some queued requests could

become lost before triggering

a Lambda function

Have input data stored in an amazon SQS queue. Then the

API listener can draw from it.

Rigid Design - We might want

to add new functionality other

than just calculating user

affinity in the future.

The use of EventBridge allows us to add many more

Lambda functions that take the same event as

calculateAffinity.

4.4 Tasks

1. Meet with sponsor to discuss the project.

2. Research 3D vector spaces and AWS (Amazon Web Services).

3. Understand AWS SQS, API Gateway, Lambda, DynamoDB, Kinesis – investigate API

choices (http, rest, etc.), practice/learn programming lambda functions, investigate

NoSQL and DynamoDB.

4. Understand the use cases given by sponsor. – Formulate questions for the sponsor as a

team.

a. Submit Updated Metric

b. Retrieve Historical Data

c. Calculate Attribute Affinity and Persist – Address mathematics of the function to

be created, so we can divide up work on it in the future.

5. High Level Design of project

a. API Gateway – Decide on API type and number of API being created

i. GET method – Do we use query string parameters or take in a JSON

payload from the client?

ii. POST method – What should the response payload look like?

Ponga Data Tracking

 19

b. Lambda – Decide number of functions needed and any additions for future

versions. Plan to stub out each lambda function for testing.

i. retrieve – Define event payloads. (Received and sent)

ii. update – Define event payloads. (Received and sent)

iii. calculateAffinity – Define event payloads. (Received and sent)

c. DynamoDB – Decide number of tables and name them.

i. raw table – Define rough schema.

ii. processed table – Define rough schema

d. Kinesis - Study its connection to the raw table and how it will send data to the

calculateAffinity Lambda.

e. SQS - Decide whether this will be part of version 1 of the project.

6. Fill out preliminary proposal and create presentation – Decide roles for the presentation

and have everyone complete a section of the proposal.

7. Present High-Level Design to sponsor.

8. Decide on a Sprint planning method for next semester.

9. Prepare for a long meeting on 11/11 and decide on Sprint planning method.

10. Understand Ponga’s use of AWS services and apply it to our own project.

11. Create contracts between the AWS services being used that serve as documentation on

our project. Define what each block of the project requires and how the blocks

communicate.

a. API

i. GET method – Document JSON map User. Display a sample request and

response from the client.

ii. POST method – Document JSON map Record. Display a sample request

from the client.

b. Lambda – Define input event payloads and functionality.

i. retrieve

ii. update

iii. eventBridgePush – explain use of EventBridge

Ponga Data Tracking

 20

iv. calculateAffinity

c. DynamoDB – Define schemas.

i. Raw

ii. Processed

12. Complete preliminary report and create presentation – Decide roles for the presentation

and have everyone complete a section of the report.

13. Setup AWS workspace for next semester using Cloud9.

14. Run AWS cost calculator.

15. Update task list and schedule.

16. Sprint 1 - Create DynamoDB database schemas and test them.

a. Raw

b. Processed

17. Sprint 2 – Stub out and test Lambda Functions and API methods.

a. retrieve

b. update

c. eventBridgePush

d. CalculateAffinity

e. GET method

f. POST method

18. Sprint 3 – Implement Lambda Functions and API methods

a. retrieve

b. update

c. calculateAffinity

d. GET method

e. POST method

19. Sprint 4 – Prepare all blocks of Insight for delivery and testing.

a. Update documentation with final design decisions and more specifics on code.

b. Create account for testing Insight.

c. Fill tables with data for testing use cases.

Ponga Data Tracking

 21

d. Create step by step guide to AWS once logged in with sample API calls.

4.5 Schedule

Tasks Dates Details Contributor

Meet with

sponsor
9/29

We will meet in JBHT 532 and use the

whiteboard for a detailed description of the

sponsor's desired design.

All

Research 9/30-10/6

For this week, the team will each research

AWS concepts and how they connect to our

project.

All

Understand

AWS services

connection

10/7

Zoom call to discuss the use of each AWS

service after having researched them. All

Understand the

use cases given

by sponsor

10/8-10/14

Discuss use cases as a team and formulate

questions for the sponsor. Zoom call at the

end of the week to address questions.

All

High Level

Design
10/15-10/23

Meet in discord several days to complete

proposal and presentation.
All

 i. DynamoDB 10/15
Decide on the number of tables. Discuss

schema ideas for our DynamoDB tables.

 ii. Kinesis and

SQS
10/18

Understand how kinesis will work for our

project. Decide on SQS being part of

version 1.

 iii. API

Gateway and

Lambda

10/21

Decide on API type and number. Make

design decisions for the GET and POST

endpoints.

Proposal and

Presentation
10/15-10/23

Complete required sections of the proposal

while defining High Level Design. Create

and practice presentation at the end of the

week.

All

Ponga Data Tracking

 22

Present High-

Level Design to

sponsor

10/28

Zoom call with sponsor. Present current

design to sponsor and get feedback. Discuss

sprint planning.

All

Sprint planning 10/29-11/4

Research Sprint planning methods and

applications for organization. Decide on one

for next semester. 20-minute zoom call on

11/4.

All

Review and

prepare
11/5-11/10

Prepare for meeting on 11/11 and decide on

Sprint planning method. Look over proposal

comments and fix errors.

All

Understand

Ponga’s AWS

system

11/11

3 hours zoom call diving into Ponga’s use of

AWS and how to apply it to our project. All

Documentation 11/14-11/26
Document all aspects of the Project and

form Sprints around the documentation.
All

 i. API Gateway 11/14-11/15

Document the requests and response of each

endpoint. Formatting the payloads that the

client sends and receives.

Matthew

 ii. getUserData

and updateUser

lambda

11/18-11/19

Document the lambda functions to specify

input events and formatting of output event. Ryan

 iii.

eventBridgePush

and

calculateAffinity

lambda

11/25-11/26

Document conversion of data stream to

event, and input/output event of calculation

lambda.
Julio

Logan

 iv. DynamoDB

tables
11/17

Document database table schemas and

connection to design.

Report and

Presentation
11/26-11/28

Complete required sections of the report

while defining detailed design and next

semester sprint plans. Create and practice

presentation at the end of the week.

All

Setup AWS

workspace
11/29-12/8

Finalize AWS accounts and setup Cloud9
Matthew

Ponga Data Tracking

 23

Run AWS cost

calculator
1/18

Estimate cost of creating and testing the

Insight Project
Matthew

Update task list

and schedule
1/19

Change Sprint structure based on sponsor

input and add a few tasks before starting

sprint 1

Ryan

Sprint 1 –

DynamoDB

Implementation

1/20-1/22

Create DynamoDB database schemas Matthew

 i. Raw 1/22

Test DynamoDB streams with CloudWatch

and eventBridgePush

Julio

Dylan

Logan

 ii. Processed
Test once calculateAffinity has been

stubbed out

Sprint 2 – Stub

Lambda and API
1/23-2/5

Stub out and test Lambda Functions and

API methods
All

 i. Retrieve 1/23

Stub get user data lambda (Can return

records from the processed table to client

through an API call)

Matthew

 ii. Update 1/24

Stub update user lambda (Can create new or

update existing records in the raw table

through an API call from the client)

Ryan

 iii. Event Bridge

Push
1/27-2/2

Stub EventBridge push lambda (Ended up

scrapping EventBridge push lambda

function and using EventBridge Pipes

instead. These push changes in the raw table

to calculate affinity lambda.)

Julio

Logan

 iv. Calculate

Affinity
2/3-2/5

Stub calculate affinity lambda (Takes in

event from the EventBridge Pipe, then puts

an item into the processed table. Calculation

design will be in the implementation phase.

We need to flush out a way of reading

events in the lambda as well.)

Dylan

Logan

Ponga Data Tracking

 24

 v. GET 1/23

Stub GET method in API Gateway (created

automatically when generating Get User

Data lambda)

Matthew

 vi. POST 1/23

Stub POST method in API Gateway

(created automatically when generating

Update User Lambda)

Matthew

Sprint 3 –

Implement

Lambda and API

2/6-3/19

Implement Lambda Functions and API

methods All

 i. Retrieve 2/20-3/03

Implement getUserData (Add exception

error codes and test pagination id when

requesting records)

Julio

Matthew

 ii. Update 2/20-2/24

Implement updateUser (implement the

adding of data to existing records rather than

replacing the existing records. Also add

exception error codes.)

Julio

Logan

 iii. Calculate

Affinity
2/13-2/17

Implement calculateAffinity (code for

calculations and the scaling of value

propositions for use by any company, not

just Ponga)

Matthew

Ryan

Dylan

 iv. API 2/6-2/7

Clean up methods in API Gateway

(modifying endpoint methods to look more

professional and presentable)

Matthew

Sprint 4 –

Prepare

deliverables

3/20-4/23

Create an AWS testing account, tables, and

guide to allow testing on individual

functions and flows.

All

 i. Update

documentation
3/20-4/2

Update Final Report and Insight

Documentation

Dylan

Logan

 ii. Setup testing

account
4/3-4/9

Set up a testing account with all functions

deployed
Matthew

 iii. Pre-populate

tables
4/3-4/9

Fill tables with sufficient data to test use

cases.

Ryan

Julio

 iv. Create guide

to test
4/10-4/23

Steps guiding tester on the functionality of

Insight on AWS
Matthew

Ponga Data Tracking

 25

Ryan

Juilo

4.6 Deliverables

• Design Documentation: Google docs linked to a Lucid chart. These contain

documentation on each major block of Insight.

i. For API this would be sample requests and responses when applicable.

ii. For Lambdas, we will provide input event payloads and functionality.

iii. For database tables, we provide the schemas.

• Login credentials to AWS account where all API, Lambdas, and DynamoDB tables have

been deployed.

• Step by Step guide to testing Insight utilizing CloudWatch logs once logged into AWS

with full access.

i. Pre-populated data in the Raw and Processed tables upon login.

ii. Tour of AWS blocks used for Insight.

iii. Series of API calls to test all use cases.

• API and Database Response Times: Timing data related to each APIs response times in

connection with the database.

• Final Report: Contains background information, use cases, detailed project and database

design, tasks, schedule, deliverables, key personnel, and references.

5.0 Key Personnel

Dylan Vaughn – Vaughn is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed Intro to

Engineering. No relevant experience or internships. Was responsible for research and

understanding AWS.

Matthew Clemence – Clemence is a senior Computer Engineering major in the Computer

Science and Computer Engineering Department at the University of Arkansas. He has completed

Software Engineering and Intro to Engineering. Was responsible for hosting weekly meetings

and research.

Ryan Drake – Drake is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed Database

Management Systems, Software Engineering, and Algorithms courses. Was responsible for

researching and understanding AWS and the services we will be using.

Julio Bonilla – Bonilla is a senior Computer Science major in the Computer Science and

Computer Engineering Department at the University of Arkansas. He has completed Database

Ponga Data Tracking

 26

Management Systems, Algorithms, Software Engineering, Computer Networks, and Intro to

Engineering. No relevant experience or internships. Was responsible for outlining the objective,

research, unit testing, and coordinating team meetings.

Logan Reed – Reed is a senior Computer Science major in the Computer Science and Computer

Engineering Department at the University of Arkansas. He has completed Database Management

Systems, Big Data Management and Analyzation, and Software Engineering. Has experience in

database and API relations in personal projects. No relevant internships. Was responsible for

outlining, researching and understanding DB relations.

Jerrel Fielder – Industry Champion. Senior technology and business executive with 30 years in

Enterprise and Consumer software in multiple roles: technology, technology leadership,

architecture, consulting, sales, sales leadership, and founder.

6.0 Facilities and Equipment

The utilities we will make use of are all the Amazon Web Services. The platform we are

building will employ API Gateway, Lambda, DynamoDB, Kinesis, and EventBridge. These

services will seamlessly flow together to accomplish the implementation of our solution.

API Gateway accepts requests to access the API and provides the promised services. API

must be formatted correctly. Amazon Lambda is a dynamic service which can accomplish many

tasks using programmable functions, and it allows for each service to be easily connected.

DynamoDB is the NoSQL database that we will be using to store and access data. Kinesis will be

used in conjunction with DynamoDB to detect changes in the tables so that certain functions can

be called in response. EventBridge will handle the bus of events passed from Kinesis change data

capture to Lambdas.

7.0 References

[1] Amazon. “What Is AWS Lambda? - AWS Lambda.” Amazon Web Services, 1 July 2022,

docs.aws.amazon.com/lambda/latest/dg/welcome.html.

[2] Amazon. “What Is Amazon DynamoDB? - Amazon DynamoDB.” Amazon Web Services, 15

June 2022,

docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html.

[3] Amazon. “Welcome - Amazon API Gateway.” Amazon Web Services, 14 Nov. 2022,

docs.aws.amazon.com/apigateway/latest/api/Welcome.html.

Ponga Data Tracking

 27

[4] Amazon. “What Is Amazon Kinesis Data Streams? - Amazon Kinesis Data Streams.”

Amazon Web Services, 29 Nov. 2021,

docs.aws.amazon.com/streams/latest/dev/introduction.html.

[5] Amazon. “What Is Amazon EventBridge? - Amazon EventBridge.” Amazon Web Services,

14 Nov. 2022, docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html.

[6] Amazon. “What Is Amazon Simple Queue Service? - Amazon Simple Queue Service.”

Amazon Web Services, 20 Oct. 2022,

docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.ht

ml.

[7] Google. “How Google Analytics Works - Analytics Help.” Google Help, 2022,

https://support.google.com/analytics/answer/12159447?hl=en.

[8] Vanhee, David. “Google Analytics 4 Click Tracking – The Beginners’ Guide.” Data Driven,

 Digital Mantis, Inc, 19 Aug. 2022,

 https://www.datadrivenu.com/how-to-track-clicks-in-googleanalytics-4/.

 Accessed 25 Nov. 2022.

[9] “Scroll Depth Trigger - Tag Manager Help.” Google Help, Google, 2022,

 https://support.google.com/tagmanager/answer/7679218?hl=en.

[10] “Recordings: The Complete Guide.” What Are Session Recordings (Session Replays) +

 How to Use Them, Hotjar, 6 June 2022, https://www.hotjar.com/session-recordings/.

